

BENHA UNIVERSITY FACULTY OF ENGINEERING

Energy and Sustainable Energy Engineering Department

Energy and Sustainable Energy Engineering Department (ESE) With the credit hours system 2020 - 2021

A-Basic Information

Department Offering the Program: Mechanical Engineering Department.

Study System: Credit Hours System.

Program Total Credit Hours: 175 credits.

Program Duration: 5-Years (10 Levels).

Program Coordinator: Prof. Ahmed Reda El Shami

Students Supervisor(s): Dr. Eng. Khaled el Naggar & Dr. Eng. Mohamed Emam

B- Professional Information

1. Faculty Mission

The mission of Faculty of Engineering at Shoubra is: "The faculty of Engineering at Shoubra is committed to prepare a graduate with competencies and problem-solving skills that qualify each engineer to compete in local and regional labor markets, the graduate will be able to innovate and become an entrepreneur. The faculty also committed to the development of engineering sciences and producing internationally distinguished scientific research, with the framework of human values and social responsibility "

2. Program mission

The program is committed to <u>qualify students for successful careers in the areas of</u> <u>energy and sustainable energy</u> by providing graduates with <u>adequate knowledge and</u> <u>their applications about the latest technologies of green energy generation from solar</u> <u>energy sources, wind energy, bio-fuel (biofuels), bio-products, natural gas</u> and optimal design of traditional and non-conventional power plants.

BENHA UNIVERSITY FACULTY OF ENGINEERING Energy and Sustainable Energy Engineering Department

To judge the compatibility between the program mission and faculty mission, the following matrix is used.

Key Words of Faculty Mission Key Words of Program Mission	prepare a graduate with competencies and problem-solving skills	compete in local and regional labor markets	innovate and become an entrepreneur	development of engineering sciences	producing internationally distinguished scientific research	human values and social responsibility
Qualify students for successful and distinguished careers in the fields of energy and sustainable energy	V	-	V			
Adequate knowledge and their applications about the latest technologies of green energy generation from solar energy sources, wind energy, bio-fuel (biofuels), bio-products, natural gas	V	V		Service Service	V	V
Optimal design of traditional and non- conventional power plants.				\checkmark	\checkmark	

3. Program Objectives

The Energy and Sustainable Energy Engineering program aims to develop the necessary skills, design, problem solving ability that meet the professional requirements of traditional, new and renewable technologies.

The graduates of the Energy and Sustainable Energy Engineering Program should be able to:

1. <u>Deepening students' knowledge backgrounds</u> in materials science, design and manufacturing techniques, circuit design, energy resources and their impact on the environment so that students have a strong theoretical background, enabling them to come up with a range of innovative approaches to generate efficient and clean energy.

Benha University Faculty of Engineering

Energy and Sustainable Energy Engineering Department

2 - Preparation of a graduate who has the ability to understand the basics of energy engineering and analysis of electricity generation systems to maintain the life of the original equipment to reach the best efficiency.

3. Supply the labor market with quality specialists in the fields of mechanical and electrical engineering, physics and chemistry of electricity generation from <u>solar, wind</u> <u>energy</u> or other alternative energies.

4. Prepare a creative graduate who has the ability to design, construct and operate equipment that transforms this energy and is used to generate electricity without any adverse effect on the surrounding environment.

5 - Supervising the power generating units and the ability to operate and shut down the various power units in normal and emergency conditions.

6- Develop solutions to the technical and administrative problems that power plants may face.

7 - Follow-up maintenance work for all equipment and maintenance of power units.

8- Evaluation of the thermal performance of thermal power plants and assessment of energy sources used and provide technical advice.

9 - Provide the students with the fundamentals knowledge of energy system analysis, principles of economical science and engineering economy.

10 - Acquire the knowledge and skills necessary for energy conservation, transportation, storage and save of energy systems.

11 - Knowledge of different types of new and renewable traditional energies.

12 - Provide students to be able to design and construct energy systems in order to function effectively in any of the Conventional Energy and Sustainable Energy Engineering roles after graduation, you will need to ensure, with our help, that you have developed the following attributes, which we believe capture the qualities that all competent engineers should possess.

To judge the compatibility of program mission with its objectives, the following matrix is used:

Key Words of Program Mission Program Objectives	Qualify students for successful and distinguished careers in the fields of energy and sustainable energy	Adequate knowledge and their applications about the latest technologies of green energy generation from solar energy sources, wind energy, bio-fuel (biofuels), bio-products, natural gas	Optimal d <u>esign</u> of traditional and non-conventional power plants
Objective #1	V	V	6
Objective #2	\checkmark		\checkmark
Objective #3	V	\checkmark	\checkmark
Objective #4		\checkmark	i i i
Objective #5	S		V
Objective #6		\checkmark	V
Objective #7			1
Objective #8		1	\checkmark
Objective #9	V	e Ome	
Objective #10	\checkmark		1
Objective #11		\checkmark	
Objective #12	\checkmark	\checkmark	\checkmark

4. Graduate Attributes

According to the National Academic Reference Standard (NARS2018), the graduates of ESE program must satisfy the following attributes:

- 1. Master a wide spectrum of engineering knowledge and specialized skills and can apply acquired knowledge using theories and abstract thinking in real life situations;
- 2. Apply analytic critical and systemic thinking to identify, diagnose and solve engineering problems with a wide range of complexity and variation;
- 3. Behave professionally and adhere to engineering ethics and standards;
- 4. Work in and lead a heterogeneous team of professionals from different engineering specialties and assume responsibility for own and team performance;
- 5. Recognize his/her role in promoting the engineering field and contribute in the development of the profession and the community;
- 6. Value the importance of the environment, both physical and natural, and work to promote sustainability principles;
- 7. Use techniques, skills and modern engineering tools necessary for engineering practice;
- 8. Assume full responsibility for own learning and self-development, engage in lifelong learning and demonstrate the capacity to engage in post- graduate and research studies;
- 9. Communicate effectively using different modes, tools and languages with various audiences; to deal with academic/professional challenges in a critical and creative manner;

10. Demonstrate leadership qualities, business administration and entrepreneurial skills.

In addition to the general attributes of the engineer according to NARS 2018, The ESE engineer should be able to:

11. Demonstrate increased depth and coverage of knowledge and understanding of energy and sustainable energy technologies and resources management;

12. Carry out preliminary designs of fluid transmission and energy and power systems,

investigate their performance and solve their essential operational problems; 13. Use energy efficiently, operate and maintain energy systems;

14. Apply and integrate knowledge, understanding and skills of different subjects and

available computer software to solve real problems in industries and power stations ;

15. Lead or supervise a group of engineers or technicians and other work force;

16. Design, operate and maintain sustainable energy systems;

17. Evaluate the sustainability and environmental issues related to energy systems and apply industrial safety;

18. Use the computer graphics for design, communication and visualization.

BENHA UNIVERSITY FACULTY OF ENGINEERING Enorgy and Sustainable E

Energy and Sustainable Energy Engineering Department

5. Program Competencies

According to the National Academic Reference Standard, the EEC program must satisfy the following Competencies:

	1	- General Engineering NARS Competencies in 2018									
	A.1	Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science and mathematics.									
A.2 Develop and conduct appropriate experimentation and/or simulation, and interpret data, assess and evaluate findings, and use statistical analy objective engineering judgment to draw conclusions.											
Level A (NARS)	A.3	Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.									
	A.4 Utilize contemporary technologies, codes of practice and standard management principles.										
	A.5	Practice research techniques and methods of investigation as an inherent part of learning.									
	A.6	Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.									
	A.7	Function efficiently as an individual and as a member of multi-disciplinary and multi- cultural teams.									
	A.8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.									
	A.9	Use creative, innovative and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.									
	A.10	Acquire and apply new knowledge; and practice self, lifelong and other learning strategies.									

BENHA UNIVERSITY FACULTY OF ENGINEERING Energy and Sustainable Energy Engineering Department

	2	2- Sustainable Energy NARS Competencies in 2018												
	B.1	Model, analyze and design physical systems applicable to the specific disciplin by applying the concepts of: Thermodynamics, Heat Transfer, Fluid Mechanics solid Mechanics, Material Processing, Material Properties, Measurements, Instrumentation, Control Theory and Systems, Mechanical Design and Analys Dynamics and Vibrations												
Level B (NARS)	B.2	Plan, manage and carry out designs of mechanical systems and machine elements using appropriate materials both traditional means and computer- aided tools and software contemporary to the mechanical engineering field support to energy and sustainable energy												
	B.3	Select, model and analyze electrical power systems applicable to the specific discipline by applying the concepts of: generation, transmission and distribution of electrical power systems												

3 8	Sustaiı	nable Energy ARS (The University of Edinburgh Benchmark)									
	D.1	Model, Analyze, design and operate internal combustion engines, pumps, turbines, and compressors according to current developments and technologies									
Level D	D.2	Apply quantitative methods and computer software relevant to energy and sustainable energy engineering, in order to solve engineering problems.									
(ARS)	D.3	Carry out preliminary designs of sustainable energy sources including solar, wind, and geothermal energy, and biotechnology and solve their operational problems.									
	D.4	Work in a variety of energy systems operations, maintenance and overhaul									

To judge the compatibility of program objectives with its competencies, the following matrix is used:

Program]	Prog	ram	Cor	npete	ncie	s					
Objectives	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B 1	B2	B 3	D1	D2	D3	D4
Objective #1	\checkmark		\checkmark	\checkmark					l	2	\checkmark		5	\checkmark			
Objective #2	\checkmark	\checkmark	\checkmark		N.					V	\checkmark						\checkmark
Objective #3			1		1	\checkmark	V		112	-			\checkmark	\checkmark	0		\checkmark
Objective #4		2	\checkmark			\checkmark			\checkmark			V	\checkmark				\checkmark
Objective #5				\checkmark		\checkmark						\checkmark			\checkmark		
Objective #6					\checkmark				\checkmark					\checkmark			
Objective #7					1	\checkmark								\checkmark			\checkmark
Objective #8		\checkmark			\checkmark						\checkmark			\checkmark	\checkmark	\checkmark	
Objective #9	\checkmark	\checkmark	~								\checkmark		Š	\checkmark			
Objective #10										V			√				
Objective #11					\checkmark												\checkmark
Objective #12			\checkmark	√	\checkmark		V			-		V				\checkmark	

6. Academic standards

6.a Nationally: National Academic References Standards (NARS 2018)

6.b External references for standards (Benchmarks): (The University of Edinburgh)

The external references for standards considered in the development of this program were the National Academic Reference Standards (NARS) prepared by the engineering education sector of the supreme council of universities in Egypt and those of the University of Edinburgh, Institution of Mechanical Engineers (MEng (Hons)).

7. Attributes of program graduates as per NARS Requirements for engineering programs, in general

The graduates of the engineering programs should be able to:

1. Master a wide spectrum of engineering knowledge and specialized skills and can apply acquired knowledge using theories and abstract thinking in real life situations;

2. Apply analytic critical and systemic thinking to identify, diagnose and solve engineering problems with a wide range of complexity and variation;

3. Behave professionally and adhere to engineering ethics and standards;

4. Work in and lead a heterogeneous team of professionals from different engineering specialties and assume responsibility for own and team performance;

5. Recognize his/her role in promoting engineering field and contribute in the development of the profession and the community;

6. Value the importance of the environment, both physical and natural, and work to promote sustainability principles;

7. Use techniques, skills and modern engineering tools necessary for engineering practice;

8. Assume full responsibility for own learning and self-development, engage in lifelong learning and demonstrate the capacity to engage in post- graduate and research studies;

BENHA UNIVERSITY FACULTY OF ENGINEERING

Energy and Sustainable Energy Engineering Department

9. Communicate effectively using different modes, tools and languages with various audiences; to deal with academic/professional challenges in a critical and creative manner;

10. Demonstrate leadership qualities, business administration and entrepreneurial skills.

In addition to

11. Demonstrate increased depth and coverage of knowledge and understanding of energy and sustainable energy technologies and resources management;

12. Carry out preliminary designs of fluid transmission and energy and power systems, investigate their performance and solve their essential operational problems;

13. Use energy efficiently, Operate and maintain energy systems;

14. Apply and integrate knowledge, understanding and skills of different subjects and available computer software to solve real problems in industries and power stations;

15. Lead or supervise a group of engineers or technicians and other work force;

16. Design, operate and maintain sustainable energy systems;

17. Evaluate the sustainability and environmental issues related to energy systems and apply industrial safety;

18. Use the computer graphics for design, communication and visualization.

8. Curriculum Structure and Contents

8a. Program duration: (5-Levels), 10 semesters

8b. Program structure: Contact hours system

No. of credit hours: 175

(Contact Lectures: 122, contact tutorial /Exercises: 60, contact lab: 69)

8c. Indicative curricula Content by Subject Area

	Subject Area	CR	%	NARS Requirements
Α	Humanities and Social Sciences (Univ. Req.)	16	9.14	9-12%
В	Mathematics and Basic Sciences	38	21.71	20-26%
С	Basic Engineering Sciences (Faculty/Spec. Req.)	39	22.29	20-23%
D	Applied Engineering and Design	38	21.71	20-22%
Ε	Computer Applications and ICT	16	9.14	9-11%
F	Projects and Practice	16	9.14	8-10%
G	Electives subjects	12	6.86	6-8%
		175	100	

Practical/Field Training: the students must carry out 3 weeks of the first field training after studying 80 CR and the second field training after studying 120 CR.

9. Program Levels and Courses

The B.Sc. degree in Energy and Sustainable Energy Engineering consists of total 175

List of Elective Courses (12 Credit Hours)

"Student has to choose four of the following courses"

		Electives subjects	CR
1	ESE410	Hydraulic and Pneumatic systems	3
2	ESE411	Selected topics in sustainable energy	3
3	ESE412	Air Conditioning & Refrigeration and Environmental Control	3
4	ESE413	Internal Combustion Engines	3
5	ESE510	Energy Management	3
6	ESE511	Marine Energy Systems	3
7	ESE512	Geothermal Energy	3
8	ESE513	Dynamic Uninterruptable Power Supply System	3

Benha University Faculty of Engineering

Energy and Sustainable Energy Engineering Department

First Year (Preparatory Year / Zero Level of Program)

First Semester:

Code	Subject	Credit		Contac	t Hours		Marka	Dronomuisitos	Program NARS
Code	Subject	Hours	Lec.	Tut	Lab	Total	Marks	Prerequisites	Covered
EMP101	Engineering Mathematics (1)	3	2	2	-	4	100		
EMP103	Physics (1)	3	2	-	3	5	100		
EMP105	Engineering Chemistry	3	2	-	3	5	100		As attached
EMP106	Engineering Mechanics (1)	3	2	2	-	4	100		matrix
MDP101	Engineering Drawing (1)	3	2	-	3	5	100		
GEN101	English Language	2	2	-	-	2	100		
		17	12	4	9	25	600		

Second Semester:

Code	Subject	Credit		Conta	t Hours	5	Marks	Dronomulaitos	Program NARS
Code	Subject	Hours	Lec.	Tut	Lab	Total	Warks	Prerequisites	Covered
EMP102	Engineering Mathematics (2)	3	2	2	-	4	100	EMP101	
EMP104	Physics (2)	3	2	-	3	5	100	EMP103	
EMP107	Engineering Mechanics (2)	3	2	2	-	4	100	EMP106	
CPE101	Computer Programming	3	2	-	3	5	100		As attached
MDP103	Production Technology & Workshops	3	2	-	3	5	100		matrix
MDP102	Engineering Drawing (2)	3	2	-	3	5	100	MDP101	
GEN102	Engineering & Society	2	2	-	-	2	100		
				4	12	30	700		

Second Year (First Level of Program)

First Semester:

Code	Subject	Credit		Contac	t Hours	5	Marks	Prerequisites	Program NARS
Code	Subject	Hours	Lec.	Tut	Lab	Total	IVIdI KS	Prerequisites	Covered
EMP201	Engineering Mathematics (3)	3	2	2	-	4	100	EMP102	
MPE201	Thermodynamics	3	2	-	3	5	100	EMP103	
MDP201	Materials Science	3	2	-	3	5	100	EMP105	As attached
MDP212	Manufacturing Technology	2	1	-	3	4	100	MDP103	
MDP203	Computer Aided Mechanical Drawing	3	2	-	3	5	100	MDP102	matrix
GEN201	Technical Report Writing	2	2	-	-	4	100	GEN101	
		16	11	2	12	25	600		

BENHA UNIVERSITY FACULTY OF ENGINEERING

Energy and Sustainable Energy Engineering Department

Second Semester:

Code	Subject	Credit		Contac	t Hours		Marka	Dronomuisitos	Program NARS
Code	Subject	Hours	Lec.	Tut	Lab	Total	Marks	Prerequisites	Covered
EMP202	Engineering Mathematics (4)	3	2	2	-	4	100	EMP201	
EMP203	Physics (3)	3	2	2	-	4	100	EMP104	
MPE202	Fluid Mechanics	3	2	-	3	5	100	EMP103	
MDP204	Mechanics & Testing of Materials	3	2	-	3	5	100	MDP201	As attached matrix
EPM201	Electrical Engineering I	3	2	2	-	4	100	EMP103	
GEN202	Psychology & Organization Behavior	2	2	-	-	2	100		
		17	12	6	6	24	600		

Third Year (Second Level of Program)

Cada	Cubicat	Credit		Conta	ct Hour	S	Maulia	Duous quisites	Program NARS
Code	Subject	Credit Hours 3 3 2 2 2 2 2 2 2	Lec.	Tut	Lab	Total	Marks	Prerequisites	Covered
MPE301	Heat & Mass Transfer	3	2	-	3	5	100	MPE201	
MPE302	Applied Fluid Mechanics	3	2	2	-	4	100	MPE202	
ELC301	Electronic Engineering	3	2	2	-	4	100	EPM301	
EMP311	Organic Chemistry	2	1	2	-	3	100	EMP105	As attached
MDP311	Machine Components Design	2	1	2	-	3	100	MDP204	matrix
EPM302	Electrical Engineering II	2	1	2	-	3	100	EPM201	
GEN301	Leadership and Management skills	2	2	-	-	2	100		
		17	11	10	3	24	700		

Second Semester:

Code	Subject	Credit		Conta	ct Hour	S	Marks	Prerequisites	Program NARS
Code	Subject	Hours	Lec.	Tut	Lab	Total			Covered
MPE303	Measurements & instrumentation Systems	3	2	-	3	5	100	EMP104	
ESE380	Field Training I	1	1			1			
MPE304	Applied Thermodynamics	3	2	2	-	4	100	MPE201	As attached
EPM301	Electrical Power Engineering	3	2	2	-	4	100	EPM201	matrix
MDP312	Theory of Machines	2	1	2	-	3	100	EMP107	
MPE305	Numerical Methods for Engineers	3	2	-	3	5	100	EMP202	
GEN302	Professional Ethics	2	2	-	-	2	100	-	
		17	12	6	6	24	600		

BENHA UNIVERSITY Faculty of Engineering

Energy and Sustainable Energy Engineering Department

After completion of this semester, student performs Industrial Training (1) course (**ESE380**) for six weeks during summer corresponding to 1 Credit Hour.

Fourth Year (Third Level of Program)

First Semester:

Code	Subject	Credit		Contac	t Hours	;	Marks	Droroquisitos	Program NARS
Code	Subject	Hours	Lec.	Tut	Lab	Total	Warks	Prerequisites	Covered
ESE411	Selected topics in Sustainable Energy	2	1	2	-	3	100	MPE201	
MDP401	Vibration & Dynamics	3	2	-	3	5	100	MDP302	
EPM401	Electrical Machines	3	2	-	3	5	100	EPM301	As attached
ESE402	Fuel & Advanced Combustion	3	2	-	3	5	100	MPE304	matrix
ESE4XX	Elective (1)	3	2	2		4	100		
GEN401	Legislations, contract and procurement management	2	2	-	-	2	100		
		16	16 11 4 9 24 6				600		

Second Semester:

Code	Subject	Credit		Conta	ct Hour	s	Marks	Dronomuisitos	Program NARS
Code	Subject	Hours	Lec.	Tut	Lab	Total	IVIALKS	Prerequisites	Covered
ESE403	Energy & Conservation Management	3	2	2	-	4	100	ESE411	
MPE401	Applied Heat & Mass Transfer	3	2	-	3	5	100	MPE301	
ESE404	Bioenergy	3	2	2	-	4	100	EMP301	
ESE405	Solar Energy	3	2	2	-	4	100	ESE401	As attached
ESE4XX	Elective (2)	3	2	2	-	4	100		matrix
ESE480	Field Training II	1	1			1			
GEN402	Human Resources Management	2	2	-	-	2	100		
EPM402	Power System Analysis	3	2	2	-	4	100	EPM301	
		21	15	10	3	28	700		

After completion of this semester, student performs Industrial Training (2) course (**ESE480**) for six weeks during summer corresponding to 1 Credit Hour.

BENHA UNIVERSITY FACULTY OF ENGINEERING

Energy and Sustainable Energy Engineering Department

Fifth Year (Fourth Level of Program) First Semester:

Code	Subject	Credit		Conta	ct Hour	s	Marks	Droroquisitos	Program NARS
Code	Subject	Hours	Lec.	Tut	Lab	Total	IVIdI KS	Prerequisites	Covered
ESE511	Energy Economics	2	1	2	-	3	100	ESE411	
ESE502	Wind Energy	3	2	2	-	4	100	MPE302	
MDP501	Control Systems analysis & Design	3	2	-	3	5	100	MDP401	As attached
ESE503	Solar Cells Fundamentals	3	2	2	-	4	100	ESE405	matrix
ESE5XX	Elective (3)	3	2	2	-	4	100		
ESE591	Project (1)	3	3	-	-	3	100	120 CR	
		17	12	8	3	23	600		

Second Semester:

Code	Subject	Credit		Contac	t Hours	;	Marks	Prereguisites	Program NARS
Code	Subject	Hours	Lec.	Tut	Lab	Total	WINKS	Prerequisites	Covered
ESE504	Power Stations	3	2	2	-	4	100	MPE304	
ESE525	Computer Applications in	2	1		3	4	100	MPE305,	
L3L325	Fluid Mechanics	2	-	-	5	4	100	MPE302	
ESE506	Energy Storage &	3	2	2	-	4	100	ESE403,	As attached
ESESUO	Transmission	5	2	2		4	100	ESE511	matrix
EPM501	Power Electronics	3	2	-	3	5	-	ELC301	
ESE5XX	Elective (4)	3	2	2	-	4	100		
ESE592	Project (2)	3	3	-	-	3	100	ESE591	
		17	12	6	6	24	500		

Total Number of Subjects: 65

Total Number of Credit Hours:175 Hrs

10. Program admission requirements

Having Egyptian Secondary education or equivalent certificate with major in Mathematics, then after fulfilling the admission requirements the students will be able to attend the Program.

11. Regulations for progression and program completion First Level/Semester

a. The student is considered successful in a certain level if he completes at least 36 credit hours in this level.

b. The referred student has to study the courses in which he has failed again with actual grade when he passes successfully. In case the student was considered absent with acceptable excuse in a course, he gets the actual grade,

c. The grades of the successful student in a course and in the general grade are evaluated as follows:-

Grade	Student percentage	Grade	No.Points
	more than 97%	A ⁺	4.00
Excellent	from 93% to less than 97%	Α	4.00
	from 89% to less than 93%	A ⁻	3.70
Vanu good	from 84% to less than 89%	B ⁺	3.30
Very good	from 80% to less than 84%	В	3.00
	from 76% to less than 80%	B	2.70
Good	from 73% to less than 76%	C ⁺	2.30
198	from 70% to less than 73%	С	2.00
	from 67% to less than 70%	C-	1.70
Pass	from 64% to less than 67%	D^+	1.30
	from 60% to less than 64%	D	1.00
Fail	less than 60%	F	0.00

The B.Sc. general grade for students is based on the cumulative marks obtained during all the years of study. The students are then arranged serially according their cumulative sum (not less than 2).

BENHA UNIVERSITY FACULTY OF ENGINEERING

Energy and Sustainable Energy Engineering Department

12. Teaching and Learning Methods

				Teac	hing	and l	Learr	ning N	Meth	ods	
Dungram	Competencies	Face-to-face Lecture	Online Education	Tutorial / Exercise	Group Discussions	Laboratory	Site Visit	Presentation	Mini Project	Research and Reporting	Brain Storming
62	A1		\checkmark	\checkmark							1
	A2	1	Y	ľ	\checkmark	\checkmark	172	1	\checkmark	\checkmark	
	A3			\checkmark							\checkmark
	A4			\checkmark			\checkmark				
el A	A5									\checkmark	\checkmark
Level A	A6				\checkmark	\checkmark	\checkmark		\checkmark		
	A7							\checkmark		\checkmark	\checkmark
	A8			J	\checkmark			\checkmark			
	A9				\checkmark			\checkmark		\checkmark	
	A10				\checkmark	J	3			\checkmark	\checkmark
B	B1	\checkmark	\checkmark	\checkmark						\checkmark	
Level B	B2	\checkmark	\checkmark	\checkmark					\checkmark		
L.	B3	\checkmark	\checkmark					\checkmark	\checkmark		
	D1		\checkmark		\checkmark				\checkmark	\checkmark	
Level D	D2				\checkmark				\checkmark	\checkmark	
Lev	D3	\checkmark			\checkmark	\checkmark	100.00		\checkmark	\checkmark	
	D4	\checkmark	\checkmark		\checkmark				\checkmark	\checkmark	

BENHA UNIVERSITY FACULTY OF ENGINEERING

Energy and Sustainable Energy Engineering Department

13.Assessment Methods

						Asse	essme	ent M	etho	ds			
	Program	Competencies	Written Exams	Online Exams	Oral Exam	Quizzes	Lab Exam	Take-Home Exam	Research Assignments	Reporting Assignments	Project Assignments	In-class Questions	
		A1	\checkmark	\checkmark	2	\checkmark			\checkmark	\checkmark		\checkmark	
		A2			\checkmark	2	\checkmark	3	\checkmark	\checkmark	37	\checkmark	1
		A3	\checkmark			\checkmark				\checkmark	\checkmark		
		A4	\checkmark	\checkmark		\checkmark				\checkmark			
-	el A	A5						\checkmark	\checkmark			\checkmark	
	Level A	A6					\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
		A7							\checkmark	\checkmark	\checkmark		
	1	A8			\checkmark				\checkmark	\checkmark	\checkmark		
		A9			\checkmark				\checkmark	\checkmark			Σ,
		A10						\checkmark		\checkmark	\checkmark	\checkmark	1
ç	R	B1	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark			
	Level B	B2	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark			
•	F	B3	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark			
		D1	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark	\checkmark		
	Level D	D2	\checkmark	\checkmark				\checkmark		\checkmark	\checkmark		
	Lev	D3	\checkmark	\checkmark				\checkmark		\checkmark	\checkmark		
L		D4	\checkmark	\checkmark			\checkmark			\checkmark	\checkmark		

BENHA UNIVERSITY FACULTY OF ENGINEERING Energy and Sust

Energy and Sustainable Energy Engineering Department

14. Evaluation of Program Competencies

Evaluator	Tool	Sample
1. Senior students	Evaluation sheet	25%
2. Alumni	Evaluation sheet & interview	5%
3. Stakeholders (Employers)	Evaluation sheet & interview	5
4. External Evaluator(s) (External Examiner(s))	Report	1
5. Internal Evaluator(s) (Internal Examiner(s))	Report	2

Coordinator of Program Quality assurance committee

> Dr. Khaled El Naggar Date 4 /4 / 2021

Program Coordinator

Prof. Dr. Ahmed Reda Date 4 / 4 / 2021

BENHA UNIVERSITY

Energy and Sustainable Energy Engineering Department

Appendix: Course Matrix with program Competences:

Course Code	Course Name		_	Eng	ineeri	ng Co	mpete	encies	(2018))	_	"Department "Sustainable Energy Competencies (NARS)			"Discipline" Sustainable Energy Competencies (ARS)			
		A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B 1	B2	B3	D1	D2	D3	D4
EMP101	Engineering Mathematics (1)	\checkmark		\checkmark														
EMP103	Physics (1)	\checkmark	\checkmark					\checkmark										
EMP105	Engineering Chemistry	\checkmark	\checkmark					\checkmark										
EMP106	Engineering Mechanics (1)	\checkmark		\checkmark														
MDP101	Engineering Drawing (1)	\checkmark					\checkmark		\checkmark									
GEN101	English Language							\checkmark	\checkmark									
EMP102	Engineering Mathematics (2)	\checkmark		\checkmark														
EMP104	Physics (2)	\checkmark	\checkmark					\checkmark										
EMP107	Engineering Mechanics (2)	\checkmark		\checkmark														
CPE101	Computer Programming	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark							
MDP103	Production Technology & Workshops		\checkmark				\checkmark			\checkmark								
MDP102	Engineering Drawing (2)		\checkmark		\checkmark				\checkmark									
GEN102	Engineering & Society			\checkmark	\checkmark													
EMP201	Engineering Mathematics (3)	\checkmark							\checkmark									
MPE201	Thermodynamics	\checkmark	-									\checkmark			\checkmark			
20	•		2021-	9-21 () بتاريخ	رقم (1	لكلية	ة بمجلس	لمصادق	202 و ا	21 -9-2	يخ 0:	93) بتار	رقم (لبرنامج	، إدارة ا	د مجلس	إعتما

BENHA UNIVERSITY

FACULTY OF ENGINEERING

(Dar

Energy and Sustainable Energy Engineering Department

Course Code	Course Name			Eng	ineeri	ng Co	mpete	encies	(2018))		" Si] Cor	epartn ustain Energ npeter NARS	able y ncies	"Discipline" Sustainable Energy Competencies (ARS)			
		A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B1	B2	B3	D1	D2	D3	D4
MDP201	Materials Science	\checkmark	\checkmark									\checkmark						
MDP212	Manufacturing Technology	\checkmark	1	\checkmark			67	112		100	\checkmark	\checkmark						\checkmark
MDP203	Computer Aided Mechanical Drawing			\checkmark						\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	
GEN201	Technical Report Writing							\checkmark	\checkmark									
EMP202	Engineering Mathematics (4)	\checkmark							\checkmark									
EMP203	Physics (3)	\checkmark							\checkmark									
MPE202	Fluid Mechanics	\checkmark										\checkmark						
MDP204	Mechanics & Testing of Materials	\checkmark		$\neg $	1		10				\checkmark	\checkmark	\checkmark					
EPM201	Electrical Engineering I	\checkmark	\checkmark								100	2						
GEN202	Psychology & Organization Behavior			\checkmark				\checkmark	\checkmark	\checkmark								
MPE301	Heat & Mass Transfer	\checkmark	\checkmark			\checkmark					\checkmark	\checkmark						
MPE302	Applied Fluid Mechanics	\checkmark	\checkmark	\checkmark		\checkmark						\checkmark						
ELC301	Electronic Engineering	\checkmark			_	\checkmark												
EMP311	Organic Chemistry	\checkmark				\checkmark		53 m			\checkmark							
MDP301	Machine Components Design			\checkmark	\checkmark								\checkmark					
EPM302	Electrical Engineering II	\checkmark	\checkmark							i i				\checkmark				
21			2021-	9-21 () بتاريخ	رقم (1	لكلية	ة بمجلس	لمصادق	202 و ا	21 -9-2	ريخ 0	93) بتا	رقم (لبرنامج	، إدارة ا	د مجلس	إعتما

BENHA UNIVERSITY

FACULTY OF ENGINEERING

ín.

Energy and Sustainable Energy Engineering Department

Course Code	Course Name	Engineering Competencies (2018)								" Si] Cor	epartr ustain Energ npeter NAR	able y ncies	"Discipline" Sustainable Energy Competencies (ARS)					
		A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B 1	B2	B3	D1	D2	D3	D4
GEN301	Leadership and Management skills			\checkmark			\checkmark		\checkmark	\checkmark	\checkmark							
MPE303	Measurements & instrumentation Systems	\checkmark	\checkmark	\checkmark				5		22/5	\checkmark	\checkmark						
ESE380	Field Training I			\checkmark	\checkmark					\checkmark			\checkmark		\checkmark			
MPE304	Applied Thermodynamics	\checkmark							\checkmark		\checkmark	\checkmark	Y	\checkmark	\checkmark			
EPM301	Electrical Power Engineering					\checkmark	\checkmark				\checkmark		1	\checkmark			\checkmark	\checkmark
MDP312	Theory of Machines	\checkmark												\checkmark				
MPE305	Numerical Methods for Engineers	\checkmark				1							\checkmark			\checkmark		
GEN302	Professional Ethics						\checkmark	\checkmark		\checkmark								
ESE411	Selected topics in Sustainable Energy		5.0.	\checkmark		\checkmark										\checkmark		
MDP401	Vibration & Dynamics	\checkmark		\checkmark						1		\checkmark						\checkmark
EPM401	Electrical Machines		\checkmark	\checkmark					2					\checkmark				
ESE402	Fuel & Advanced Combustion			\checkmark					6				\checkmark		\checkmark			\checkmark
ESE410	Elective (1)			\checkmark	\checkmark					\checkmark					\checkmark			\checkmark
GEN401	Legislations, contract and procurement management						\checkmark			\checkmark	\checkmark							
ESE403	Energy & Conservation Management	\checkmark	\checkmark										\checkmark					\checkmark

إعتماد مجلس إدارة البرنامج رقم (93) بتاريخ 20-9- 2021 و المصادقة بمجلس الكلية رقم (1) بتاريخ 21-9-2021

BENHA UNIVERSITY

FACULTY OF ENGINEERING

ín.

Energy and Sustainable Energy Engineering Department

Course Code	Course Name			Eng	ineeri	ng Co	mpete	ncies	(2018))		" S Coi	epartr ustain Energ npeter NARS	able y ncies	"Discipline" Sustainable Energy Competencies (ARS)			
		A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B 1	B2	B3	D1	D2	D3	D4
MPE401	Applied Heat & Mass Transfer	\checkmark	\checkmark	\checkmark		\checkmark	_				\checkmark	\checkmark						
ESE404	Bioenergy	\checkmark		\checkmark		\checkmark		5-11		1	\checkmark						\checkmark	
ESE405	Solar Energy	\checkmark	\checkmark	\checkmark		\checkmark						\checkmark	\checkmark			\checkmark		\checkmark
ESE412	Elective (2)	\checkmark				\checkmark						\checkmark						\checkmark
ESE480	Field Training II			\checkmark				\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			
GEN402	Human Resources Management				\checkmark													
EPM402	Power System Analysis	\checkmark	\checkmark	\checkmark							. 0	\checkmark		\checkmark		\checkmark		\checkmark
ESE501	Energy Economics			\checkmark	-			1	\checkmark							\checkmark		
ESE502	Wind Energy	\checkmark	\checkmark	\checkmark								\checkmark	\checkmark			\checkmark		\checkmark
MDP501	Control Systems analysis & Design	\checkmark					\checkmark			\checkmark		\checkmark	\checkmark	\checkmark				\checkmark
ESE503	Solar Cells Fundamentals			-						1	32.55	\checkmark		\checkmark			\checkmark	
ESE510	Elective (3)				\checkmark	\checkmark				\checkmark		\checkmark	\checkmark		\checkmark			\checkmark
ESE591	Project (1)	\checkmark		\checkmark	\checkmark	\checkmark												
ESE504	Power Stations	\checkmark		\checkmark						-			\checkmark		\checkmark			\checkmark
ESE525	Computer Applications in Fluid Mechanics												\checkmark			\checkmark		
ESE506	Energy Storage & Transmission	\checkmark	\checkmark	\checkmark						1.1				\checkmark				\checkmark

إعتماد مجلس إدارة البرنامج رقم (93) بتاريخ 20-9- 2021 و المصادقة بمجلس الكلية رقم (1) بتاريخ 21-9-2021

BENHA UNIVERSITY

Energy and Sustainable Energy Engineering Department

Course Code	Course Name		Engineering Competencies (2018) "Department "Sustainable Energy Competencies (NARS) "Discip Sustainable Competencies (AR								le Energy tencies							
		A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B1	B2	B3	D1	D2	D3	D4
EPM501	Power Electronics	1	\checkmark	Y	1		\checkmark							\checkmark				
ESE512	Elective (4)				\checkmark					1						\checkmark		\checkmark
ESE592	Project (2)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		

