THERMAL PERFORMANCE OF A CROSS FLOW HEAT EXCHANGER WITH SEMI-CIRCULAR TUBES

M. Moawed*
Faculty of Eng. Shoubra,
Benha branch, Zagazig Univ., Cairo, Egypt

ABSTRACT

In the present study, an experimental and numerical investigation of heat transfer and pressure drop of a cross flow heat exchanger with a bundle of semi-circular tubes are presented. The tubes are arranged in-line with a capability of changing the angles of attack. Four tested heat exchangers are used with different relative transverse pitches (S_t/d) while the relative longitudinal pitch (S_L/d) is kept constant. The angle of attack (θ) is varied from 0° to 270° and the relative transverse pitch (S_t/d) is changed from 1.35 to 1.64. A numerical code is implemented to determine the heat transfer coefficient and pressure drop of a bundle of semi-circular tubes within the ranges of conditions employed in the experimental study. The experimental results showed that, the average Nusselt number (Nu), the average friction factor (f) and effectiveness (E) are strongly dependent on the angle of attack (θ) and S_t/d. A comparison between the numerical and the experimental results showed that there is a good agreement between them. Also, the good agreement between the experimental results with the published data is observed.

Key words: Heat exchanger, thermal performance, cross-flow, semi-circular tubes.

*Corresponding author:
E-mail: mmoawed@hotmail.com (M. Moawed)