



تصميم البرنامج

مرفق 2-2/1/5-2

Specifications of Mechanical Power Engineering Program (2022/2023)

2021 Bylaw

University: Benha University
Faculty: Faculty of engineering at Shoubra
Department: Mechanical Engineering Department
Specification of Mechanical Power Engineering (B.Sc. Program) 2022/2023

A- Basic Information

1- Program title: Mechanical Power Engineering Program

2- Program type: Single

3- Department: Mechanical Engineering

4- Coordinator: Assoc. Prof. Dr. Mohamed Reda Salem

5- External evaluator: Prof. Dr. Mohamed Watani Mohamed El-Sayed, Faculty of engineering,

Mataria, Helwan University

6- Last date of program specifications approval: 2021

B- Professional Information

1. Faculty Mission:

The faculty of Engineering at Shoubra is committed to prepare a graduate with competencies and problem-solving skills that qualify each engineer to compete in local and regional labor markets, the graduate will be able to innovate and become an entrepreneur. The faculty also committed to the development of engineering sciences and producing internationally distinguished scientific research, with the framework of human values and social responsibility.

2. Program Mission:

The mechanical power engineering program is committed to graduating engineers who are able to understand the continuous <u>development in scientific technologies</u> and <u>competition at the local and regional levels</u>, equipped with <u>basic and applied science foundations</u>, able to <u>produce innovative solutions</u> to the needs of all sectors of society in the fields of mechanical power engineering, and are aware of the <u>ethical and professional values and requirements of environmental protection</u>. In addition to <u>developing research and scientific studies</u> and upgrading their quality in line with the needs of society.

To judge the compatibility between the program mission and faculty mission, both are divided to keywords and the matrix given in **Appendix A** is used.

3. Program Educational Objectives:

The mechanical power engineering program objectives are:

- 3.1. Apply and integrate knowledge and understanding of mathematics, physics, engineering sciences and skills to solve engineering problems in various topics and computer programs available to solve real problems in industries, heating, ventilation and air conditioning systems, and power plants to meet the required needs within realistic constraints.
- 3.2. Identify, formulate, and solve basic engineering problems and use appropriate engineering techniques, skills and tools necessary for engineering practice and project management.
- 3.3. Evaluating the sustainability and environmental issues related to mechanical energy systems and considering the impact of engineering solutions on society and the environment.

- 3.4. Use energy efficiently, demonstrate knowledge of contemporary engineering issues, and engage in self-learning and lifelong learning.
- 3.5. Apply industrial security, display professional and ethical responsibilities, understand context, and communicate effectively.
- 3.6. Work effectively within multi-disciplinary engineering teams and lead or supervise a group of engineers, technicians, and workforce.
- 3.7. Design, operation and maintenance of fluid and energy transmission systems, heating, ventilation and air conditioning systems, internal combustion engines and steam engines, verifying their performance and solving their basic operational problems.

To judge the compatibility of program mission with its Educational Objectives, the matrix given in **Appendix B** is used.

4. Graduate Attributes

According to the National Academic Reference Standard (NARS2018), the graduates of any engineering program must satisfy the following attributes:

- 1) Master a wide spectrum of engineering knowledge and specialized skills and can apply acquired knowledge using theories and abstract thinking in real life situations.
- 2) Apply analytic critical and systemic thinking to identify, diagnose and solve engineering problems with a wide range of complexity and variation.
- 3) Behave professionally and adhere to engineering ethics and standards.
- 4) Work in and lead a heterogeneous team of professionals from different engineering specialties and assume responsibility for own and team performance.
- 5) Recognize his/her role in promoting the engineering field and contribute in the development of the profession and the community;
- 6) Value the importance of the environment, both physical and natural, and work to promote sustainability principles.
- 7) Use techniques, skills and modern engineering tools necessary for engineering practice.
- 8) Assume full responsibility for own learning and self-development, engage in lifelong learning and demonstrate the capacity to engage in post- graduate and research studies.
- 9) Communicate effectively using different modes, tools and languages with various audiences; to deal with academic/professional challenges in a critical and creative manner.
- 10) Demonstrate leadership qualities, business administration and entrepreneurial skills.

Besides the above-mentioned general attributes of all engineering graduates, the Mechanical Power Engineering graduates must satisfy the following attributes:

- 11) Evaluate the sustainability and environmental issues related to mechanical power systems.
- 12) Use energy efficiently.
- 13) Apply industrial safety.
- 14) Apply and integrate knowledge, understanding and skills of different subjects and available computer software to solve real problems in industries and HVAC systems and power stations.
- 15) Lead or supervise a group of engineers, technicians, and work force.
- 16) Carry out preliminary designs of fluid transmission and power systems, investigate their performance and solve their essential operational problems.
- 17) Design, operate and maintain HVAC systems, internal combustion engines and steam engines.

To judge the compatibility of program mission as well as its Educational Objectives with the graduate attributes, the two matrices given in **Appendix C** are used.

5. Academic Standards of Program

5.1. Program Competencies

According to the National Academic Reference Standard, the program in Mechanical Power Engineering must satisfy the following Competencies:

		5.1. General Engineering NARS Competencies in 2018
	A.1	Identify, formulate, and solve complex engineering problems by applying
		engineering fundamentals, basic science and mathematics.
	A.2	Develop and conduct appropriate experimentation and/or simulation, analyze
		and interpret data, assess and evaluate findings, and use statistical analyses
		and objective engineering judgment to draw conclusions.
	A.3	Apply engineering design processes to produce cost-effective solutions that
		meet specified needs with consideration for global, cultural, social, economic,
		environmental, ethical and other aspects as appropriate to the discipline and
		within the principles and contexts of sustainable design and development.
	A.4	Utilize contemporary technologies, codes of practice and standards, quality
		guidelines, health and safety requirements, environmental issues and risk
Level A		management principles.
(NARS)	A.5	Practice research techniques and methods of investigation as an inherent part
		of learning.
	A.6	Plan, supervise and monitor implementation of engineering projects, taking
		into consideration other trades requirements.
	A.7	Function efficiently as an individual and as a member of multi-disciplinary and
		multi- cultural teams.
	A.8	Communicate effectively – graphically, verbally and in writing – with a range
		of audiences using contemporary tools.
	A.9	Use creative, innovative and flexible thinking and acquire entrepreneurial and
		leadership skills to anticipate and respond to new situations.
	A.10	Acquire and apply new knowledge; and practice self, lifelong and other
		learning strategies.

	5.2. Mechanical Engineering NARS								
Level B (NARS)	B.1	Model, analyze and design physical systems applicable to the specific discipline by applying the concepts of Thermodynamics, Heat Transfer, Fluid Mechanics, solid Mechanics, Material Processing, Material Properties, Measurements, Instrumentation, Control Theory and Systems, Mechanical Design and Analysis, Dynamics and Vibrations.							
	B.2	Plan, manage and carry out designs of mechanical systems and machine elements using appropriate materials both traditional means and computer-aided tools and software contemporary to the mechanical engineering field.							

5.2. Mechanical Engineering NARS									
	B.3	Select conventional mechanical equipment according to the required							
		performance.							
	B.4	Adopt suitable national and international standards and codes, integrate legal,							
		economic, and financial aspects to design, build, operate, inspect and maintain							
		mechanical equipment and systems.							

	5.3. Mechanical Power ARS								
	C.1	Prepare, supervise the implementation of engineering drawings, computer graphics and write, present technical reports.							
Lavel C	C.2	Plan, schedule and use workshop equipment according to the appropriate codes and standards.							
Level C (ARS)	C.3	Prepare, supervise and carry out plans for operation and maintenance of power mechanical systems (fluid transmission networks, internal combustion engines, Refrigeration, HVAC, power plant equipment,,,,,).							
	C.4	Design, evaluate mechanical power and energy for engineering systems, process performance and propose, conduct improvements.							

6. National Academic References Standards (NARS)

The program is adopted exactly **NARS** as reference academic standards for levels A and B and **ARS** for level C of this program (*National Academic Reference Standards (NARS) for Engineering 2nd edition, issued in 2018*).

7. Curriculum Structure and Content

7. 1. Program Duration: 10 semesters (5-years)

The academic year is divided into two semesters as follows (or according to the decisions of the Supreme Council of Universities):

- First semester (fall-semester): starts at the beginning of the third week of September for a period of 15 weeks.
- Second semester (spring-semester): starts at the beginning of the second week of February for a period of 15 weeks.

7. 2. Program Structure: Contact Hours System

No. of Contact Hours: 250 99 Lectures 151 Tutorial/Lab.
 No. of Contact Hours: 250 220 Compulsory 30 Elective
 No. of Contact Hours of Basic Science: 64 Hours = 25.6%
 No. of Contact Hours of Social Science and Humanities: 20 Hours = 8%

• No. of Contact Hours of Specialized Courses: 160 Hours = 64%

7. 3. Indicative Curricula Content by Subject Area

NO	Subject Area	Contact Hours	%	% According to Reference Framework
1	Humanities & Social Science	20	8	8-12
2	Mathematics & Basic Sciences	64	25.6	20-26
3	Basic Engineering Science	67	26.8	25-30
4	Applied Engineering and Design	71	28.4	25-30
5	Business Administration	11	4.4	2-4
6	Engineering Knowledge	7	2.8	3-6
7	Projects &Training	10	4	3-6
		250	100	100

NO	Subjects	Contact Hours	%	Min. Percentage According to Reference Framework (%)
1	University Requirements	20	8	8
2	Faculty Requirements	70	28	20
3	Major Specialization Subjects	98	39.2	35
4	Minor Specialization Subjects	62	24.8	Maximum 30
		250	100	

7. 4. Program Levels (Years):

Preparatory Year: It is required to pass 50 hours distributed as follows:

48 compulsory 2 Elective

First Year Mechanical Power: It is required to pass 50 hours distributed as follows:

48 compulsory 2 Elective

Second Year Mechanical Power: It is required to pass 50 hours distributed as follows:

46 compulsory 4 Elective

Third Year Mechanical Power: It is required to pass 50 hours distributed as follows:

46 compulsory 4 Elective

Fourth Year Mechanical Power: It is required to pass 50 hours distributed as follows:

34 compulsory 16 Elective

Learn Today ... Achieve Tomorrow

Voor	Hours						
Year	Compulsory	Elective	Total				
Preparatory	48	2	50				
First	48	2	50				
Second	46	4	50				
Third	46	4	50				
Fourth	34	16	50				
Total Ho	250						

7. 5. Program Levels and Courses

Year of Program 1 - Preparatory Year (Semester 1) - Compulsory

Code	Course Title	N	lo. of H	ours/We	Intended Learning	
Code		Lect.	Tut.	Lab.	Total	Outcomes (ILO's)
BAS010	Differential Calculus and Algebra	2	2	0	4	
BAS011	Statics	2	1	2	5	
BAS012	Engineering Chemistry	2	1	2	5	
BAS013	Physics of Materials & Electricity	2	1	3	6	As Attached Matrix
MEC010	Engineering Drawing (1) ×	0	3	0	3	
GEN0x0	Elective - Language requirements List	2	0	0	2	
		10	8	7	25	

Year of Program 1 - Preparatory Year (Semester 2) - Compulsory

Code	Course Title	N	o. of Ho	ours/We	Intended Learning	
Code		Lect.	Tut.	Lab.	Total	Outcomes (ILO's)
BAS014	Integral Calculus & Analytical Geometry	2	2	0	4	
BAS015	Dynamics	2	1	2	5	
BAS016	Physics of Light, Heat and Magnetism	2	1	2	5	
MEC011	Principles of Manufacturing Engineering†	1	0	2	3	As Attached Matrix
MEC012	Engineering Drawing (2) ×	0	3	1	4	
GEN011	Computer Skills ×	1	0	1	2	
GEN012	History of Engineering & Technology	2	0	0	2	
		10	7	8	25	

Year of Program 2 - First Year Mechanical Power (Semester 1) - Compulsory

Code	Course Title	N	lo. of H	ours/We	Intended Learning		
Code		Lect.	Tut.	Lab.	Total	Outcomes (ILO's)	
MEC110	Mechanical Drawing *x	1	3	0	4		
ELE170	Electrical Engineering	2	2	0	4		
MEC111	Materials Science	1	1	3	5	1	
BAS110	Statistics & Theory of Probability	2	2	0	4	As Attached Matrix	
BAS111	Engineering Mechanics	1	3	0	4		
MEC112	Manufacturing Technology (1)†	2	1	1	4		
		9	12	4	25		

Year of Program 2 - First Year Mechanical Power (Semester 2) - Compulsory

Code	Course Title	N	lo. of H	ours/We	Intended Learning	
Code		Lect.	Tut.	Lab.	Total	Outcomes (ILO's)
MEC120	Thermodynamics	2	2	1	5	
BAS112	Differential Equations	2	2	0	4	
MEC121	Fluid Mechanics (1)	2	1	2	5	1
MEC113	Mechanics & Testing of Materials	2	1	2	5	As Attached Matrix
MEC102	Computer Aided Engineering Mathematics	1	0	3	4	As Attached Matrix
GEN9XX	Elective from University Requirements	1	1	0	2	
		10	7	8	25	

Year of Program 3 - Second Year Mechanical Power (Semester 1) - Compulsory

Code	Course Title	N	lo. of H	ours/We	Intended Learning	
Code		Lect.	Tut.	Lab.	Total	Outcomes (ILO's)
MEC210	Engineering Economy & Accounting	2	2	0	4	
MEC201	Theory of Measurements & Sensors	1	1	3	5	
BAS211	Numerical & Complex Analysis	2	2	0	4	
MEC211	Kinematics & Dynamics of Rigid Bodies	2	2	1	5	As Attached Matrix
MEC212	Manufacturing Technology (2)†	2	1	2	5	
GEN9XX	Elective from University Requirements	1	1	0	2	
		11	8	6	25	

Year of Program 3 - Second Year Mechanical Power (Semester 2) - Compulsory

Codo	Course Title	N	lo. of H	ours/We	ek	Intended Learning
Code	Course Title	Lect.	Tut.	Lab.	Total	Outcomes (ILO's)
MEC213	Mechanical Design (1)	2	4	0	6	
MEC220	Heat Transfer	2	1	2	5	
MEC214	Mechanical Vibrations	2	2	0	4	
ELE270	Electrical Machines	2	1	1	4	As Attached Matrix
MEC221	Fluid Mechanics (2)	2	1	1	4	
GEN9XX	Elective from University Requirements	1	1	0	2	
		11	10	4	25	

Year of Program 4 - Third Year Mechanical Power (Semester 1) – <u>Compulsory</u>

Code	Course Title	N	o. of Ho	ours/We	ek	Intended Learning
Code	Course Title	Lect.	Tut.	Lab.	Total	Outcomes (ILO's)
MEC310	Engineering Project Management	2	2	0	4	
MEC320	Hydraulic & Pneumatic Systems	2	0	3	5	
MEC330	System Dynamics	2	2	0	4	
MEC321	Applied Thermodynamics	1	2	2	5	As Attached Matrix
MEC322	Heat & Mass Transfer	1	2	2	5	As Attached Matrix
GEN9XX	Elective from University Requirements	1	1	0	2	
MEC300	Field Training (1)	0	0	0	0	
		9	7	9	25	

Year of Program 4 - Third Year Mechanical Power (Semester 2) - Compulsory

Codo	Course Title	No. of Hours/Week				Intended Learning
Code	Course Title	Lect.	Tut.	Lab.	Total	Outcomes (ILO's)
MEC331	Automatic Control	2	2	0	4	
MEC324	Computer App. in Energy Field	1	0	3	4	
MEC325	Gas Dynamics	2	2	1	5	
MEC326	Fuel & Combustion	2	2	1	5	As Attached Matrix
MEC327	Renewable Energy& Environ. Prot.	2	1	2	5	
GEN9XX	Elective from University Requirements	1	1	0	2	
		11	7	7	25	

Year of Program 5 - (Fourth Year Mechanical (Power)) (Semester 1) - Compulsory

Codo	Course Title	No. of Hours/Week				Intended Learning	
Code	Code Course Title	Lect.	Tut.	Lab.	Total	Outcomes (ILO's)	
MEC420	Internal Combustion Engines (ICE)	2	2	1	5		
MEC421	Turbomachines	2	2	1	5		
MEC422	Refrigeration & Air Conditioning	2	2	1	5		
MEC4xx	Elective (1)	1	2	1	4	As Attached Matrix	
MEC4xx	Elective (2)	1	2	1	4	As Attached Matrix	
GEN9XX	Elective from University Requirements list	1	1	0	2		
MEC400	Field Training (2)	0	0	0	0		
		9	11	5	25		

Year of Program 5 - Fourth Year Mechanical Power (Semester 2) - Compulsory

Codo	Code Course Title	N	lo. of H	ours/We	Intended Learning	
Code		Lect.	Tut.	Lab.	Total	Outcomes (ILO's)
MEC414	Feasibility Study of Eng. Projects	1	2	0	3	
MEC423	Power Stations	2	2	0	4	
MEC4xx	Elective (3)	2	1	0	3	
MEC4xx	Elective (4)	2	1	0	3	As Attached Matrix
GEN9XX	Elective from University Requirements	1	1	0	2	
MEC490	Graduation Project *	0	0	10	10	
_	_	9	6	10	25	

<u>List of Technical Languages Elective Courses (Selected by students)</u>

Code	Course Title	No	of ho	Intended Learning		
Code	Course Title	Lect.	Tut.	Lab	Total	Outcomes (ILO's)
GEN010	English Language	2	0	0	2	
GEN020	German Language	2	0	0	2	As Attached
GEN030	French Language	2	0	0	2	Matrix

List of Elective Courses from University Requirements (Selected by Students)

Codo	Course Tible	No	No. of Hours/Week			Intended Learning
Code	Course Title	Lect.	Tut.	Lab	Total	Outcomes (ILO's)
GEN900	Communication & Presentation Skills	1	1	0	2	
GEN901	Theory of Sustainability	1	1	0	2	
GEN902	Societal Issues	1	1	0	2	
GEN903	Research & Analysis Skills	1	1	0	2	
GEN904	Entrepreneurship	1	1	0	2	As Attached
GEN905	Professional Ethics	1	1	0	2	Matrix
GEN906	Critical Thinking	1	1	0	2	
GEN907	Human Resources Management	1	1	0	2	
GEN908	Contracts and Legislation	1	1	0	2	
GEN909	Method of Scientific Research and Writing	1	1	0	2	

List Of Elective Courses (Selected by Students)

0.1.	Code Subject		Cont	act Hrs			
Code			Tut.	Lab.	Total		
	List (1) of Elective Courses						
MEC450	Water Desalination & Wastewater Treatment	1	2	1	4		
MEC451	Pipeline Networks	1	2	1	4		
	List (2) of Elective Courses						
MEC452	Thermal Equipment	1	2	1	4		
MEC453	Aerodynamics Engineering	1	2	1	4		
MEC454	Computational Fluid Mechanics (CFD)	1	2	1	4		
	List (3) of Elective Courses						
MEC455	Numerical Methods in Energy Science	2	1	0	3		
MEC456	Energy Management Systems	2	1	0	3		
MEC457	Fire Fighting and Safety Systems	2	1	0	3		
	List (4) of Elective Courses						
MEC458	Advanced Refrigeration & Air Conditioning	2	1	0	3		
MEC459	Vehicle Engineering	2	1	0	3		

8. Program Admission Requirements

Having Egyptian Secondary education or equivalent certificate with major in Mathematics, then after passing the preparatory year and fulfilling the admission requirements the students will be able to attend the program.

9. Regulations for progression and program completion First Year/Level/Semester

- a) The student is considered successful if he/she passes the examinations in all courses of his class. The student is promoted to the next higher level if he/she fails in not more than two subjects of his class or from lower classes,
- b) The referred student has to sit the examination in the courses in which he/she has failed together with the students studying the same courses. The student gets a pass grade when he/she passes the examination successfully. In case the student was considered absent with acceptable excuse in a course, he/she gets the actual grade,
- c) The grades of the successful student in a course and in the general grade are evaluated as follows

Distinction: From 85% of the total mark and upwards.
 Very good: From 75% to less than 85% of the total mark.
 Good: From 65% to less than 75% of the total mark
 Pass: From 50% to less than 65% of the total mark

The grades of a failing student in a course are estimated in one of the following grades:

o Weak: From 30% to less than 50% of the total mark

o Very weak: Less than 30% of the total mark.

Grade	Percentage					
Grade	From	Up to				
Distinction	85%	100%				
Very good	75%	85%				
Good	65%	75%				
Pass	50%	65%				
The grades of a failing stude	ent in a course are estimated in	one of the following grades:				
Weak	30	50%				
Very weak		Less than 30%				

- ➤ The B.Sc. general grade for students is based on the cumulative marks obtained during all the years of study. The students are then arranged serially according to their cumulative sum.
- The student is awarded an honor degree if his cumulative sum is distinction or very good provided that he/she gets a grade not less than very good in any class of study other than the preparatory year. Moreover, he/she should not have failed in any examination he/she has sat in any class other than the preparatory year.

10. Teaching and Learning Methods

Considering that the program competences illustrate a wholistic status that would be achieved through a journey involves many different courses within different levels, and the final competence achievement can only be assessed at the end of its journey, each single competence is broken-down into measurable Learning Outcomes LOs that should be achieved in different courses. Thus, the program graduate competence may be considered as the final goal, while the courses LOs may be considered as the procedural aims/objectives. Hence, different teaching and learning methods are applied in program courses to cover the three domains given by the following table. For more details, please refer to the course specifications.

Learn Today ... Achieve Tomorrow

Teaching and Learning Methods

- ➤ Face-to-face Lecture
- Online Education
- Tutorial / Exercise
- Group Discussions
- Laboratory
- Site Visit
- Presentation
- Collaborate Learning (Team Project)
- Research and Reporting
- Class Activity
- Case Study
- Assignments/homework
- Brain Storming

Tooking O Looming Matheda	Learning Outcomes Domains (Courses LOs)					
Teaching & Learning Methods	Cognitive	Psychomotor	Affective			
Face-to-face Lecture	√	٧	٧			
Online Education	√		٧			
Tutorial / Exercise		٧	٧			
Group Discussions	√					
Laboratory	√	√				
Site Visit			٧			
Presentation	√		٧			
Collaborate Learning (Team Project)	√		٧			
Research and Reporting		√	٧			
Class Activity	√	√				
Case Study	√	٧				
Assignments/homework		√	٧			
Brain Storming	√	V				

11. Assessment Methods of Program Intended Learning Outcomes:

Different assessment methods are applied in the program courses to assess these Learning Outcomes. The following table illustrates the assessment methods and what they assess in most cases. For further detail, refer to the courses' specifications

- Written Exams
- Online Exams
- Oral Exam
- Quizzes
- Lab Exam
- > Take-Home Exam
- Research Assignments
- Reporting Assignments
- Project Assignments
- In-class Questions
- Class activities

Formative Assessment	Learning Outcomes Domains (Courses LOs)					
Formative Assessment	Cognitive	Psychomotor	Affective			
Quizzes	√	٧	٧			
Research Assignments	√		٧			
In-class Questions	√	٧	٧			
Class activities	٧	٧	٧			

Summative Assessments	Learning Outcomes Domains (Courses LOs)						
Summative Assessments	Cognitive	Psychomotor	Affective				
Written Exams	√	٧	٧				
Online Exams	√	٧					
Oral Exam	√	٧	٧				
Lab Exam	√	√					
Take-Home Exam	√	√	٧				
Reporting Assignments	√		٧				
Project Assignments	√	٧	٧				

12. Evaluation of Program Intended Learning Outcomes (200)

No.	Evaluator	Tool	Sample
1.	Senior students	Evaluation sheet	50%
2.	Alumni	Evaluation sheet & interview	15%
3.	Stakeholders (Employers)	Evaluation sheet & interview	15%
4.	External Evaluator(s) (External Examiner(s))	Report	20%
5.	Other	None	-

Coordinator of Program Quality Assurance Committee Head of Mechanical Engineering Department

Assoc. Prof. Dr. Mohamed Reda Salem

Prof. Dr. Sameh Shawky Habib

Appendix A

To judge the compatibility between the program mission and faculty mission, the following matrix is used.

Key Words of Faculty Mission Key Words of Program Mission	prepare a graduate with competencies and problem-solving skills	compete in local and regional labor markets	innovate and become an entrepreneur	development of engineering sciences	producing internationally distinguished scientific research	human values and social responsibility
Development of scientific technologies	٧			٧		
Competition at the local and regional levels		٧				
Basic and applied science foundations					٧	
Produce innovative solutions			٧			
Ethical and professional values and requirements of environmental protection						1
Developing research and scientific studies		٧		٧		

Appendix B

To judge the compatibility of program mission with its objectives, the following matrix is used:

Key Words of Program Mission Program Objectives	Development of scientific technologies	Competition at the local and regional levels	Basic and applied science foundations	Produce innovative solutions	Ethical and professional values and requirements of environmental protection	Developing research and scientific studies
Objective #1	٧		٧	٧		٧
Objective #2	√		٧	٧		√
Objective #3	٧	٧	٧		٧	
Objective #4	٧			٧		
Objective #5	٧				٧	
Objective #6		٧		٧	٧	
Objective #7	٧	٧	٧	٧		٧

Appendix C

To judge the compatibility of graduate attributes with program objectives, the following matrix is used:

Program Objectives Graduate Attributes	Objective #1	Objective #2	Objective #3	Objective #4	Objective #5	Objective #6	Objective #7
Attribute #1	٧						
Attribute #2		٧					
Attribute #3						٧	
Attribute #4					٧		
Attribute #5	٧		٧				
Attribute #6			٧				
Attribute #7		٧					
Attribute #8				٧			
Attribute #9					٧	٧	
Attribute #10					٧	٧	
Attribute #11			٧				
Attribute #12				٧			
Attribute #13					٧		
Attribute #14	٧						
Attribute #15		٧			٧	٧	
Attribute #16							٧
Attribute #17							٧

To judge the compatibility of program objectives with its competencies, the following matrix is used:

Program	Program Competencies																	
Objectives	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	B1	B2	B3	B4	C1	C2	C3	C4
Objective #1	٧	٧		٧						٧	٧				٧		٧	
Objective #2	٧		٧		٧				٧		٧	٧					٧	٧
Objective #3		٧	٧	٧						٧		٧	٧		٧			٧
Objective #4				٧			٧							٧		٧		
Objective #5						٧	٧		٧							٧		
Objective #6			٧													٧		
Objective #7		٧	٧								٧	٧					٧	٧

Appendix E

To judge the compatibility of program's graduate attributes with its competencies, the following matrix is used:

Graduate								Progr	am Co	ompete	ncies							
Attributes	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	B1	B2	B3	B4	C1	C2	C3	C4
Attribute #1	٧																	
Attribute #2	٧								٧									
Attribute #3	٧		٧	٧														
Attribute #4						٧	٧											
Attribute #5			٧	٧		٧			٧									
Attribute #6			٧	٧														
Attribute #7		٧																
Attribute #8					٧					٧								
Attribute #9								٧										
Attribute #10									٧									
Attribute #11			٧															
Attribute #12	٧	٧		٧							٧		٧					
Attribute #13				٧								٧				٧		
Attribute #14											٧	٧		٧			٧	
Attribute #15							٧								٧			
Attribute #16														٧				٧
Attribute #17														٧				٧

Appendix F

Course Matrix with Program Competences

The following matrix is used to judge the compatibility between the program competences and program courses

Course Code	Course Name			Eng	ineerir	ng Com	peten	cies (2	018)			_	eering	t" Mech Compet ARS)		P	scipline" ower En ompeter	gineerir	ng
		A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	B1	B2	B3	B4	C1	C2	C3	C4
GEN0X0	Technical Language							٧	٧										
GEN011	Computer Skills								٧		٧								
GEN012	History of Engineering & Technology			٧	٧														
GEN900	Communication & Presentation Skills					٧			٧	٧									
GEN901	Theory of Sustainability			٧				٧											
GEN902	Societal Issues			٧				٧	٧										
GEN903	Research & Analysis Skills		٧			٧													
GEN904	Entrepreneurship			٧						٧									
GEN905	Professional Ethics			٧					٧	٧									
GEN906	Critical Thinking									٧	٧								
GEN907	Human Resources Management				٧		٧												
GEN908	Contracts and Legislation			٧	٧														
GEN909	Method of Scientific Research and Writing		٧			٧													
BAS010	Differential Calculus and Algebra	٧		٧															
BAS011	Statics	٧		٧															
BAS012	Engineering Chemistry	٧	٧					٧											
BAS013	Physics of Materials & Electricity	٧	٧					٧											

Learn Today ... Achieve Tomorrow

Course Code	Course Name			Eng	ineerir	ng Com	peten	cies (2	018)				eering	t" Mecl Compet ARS)		P	scipline" ower Er ompete	ngineerii	ng
		A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	B1	B2	B3	B4	C1	C2	C3	C4
MEC010	Engineering Drawing (1)	٧					٧		٧										
MEC012	Engineering Drawing (2)		٧		٧				٧										<u> </u>
BAS014	Integral Calculus & Analytical Geometry	٧		٧															
BAS015	Dynamics	٧		٧															
BAS016	Physics of Light, Heat and Magnetism	٧	٧					٧											
MEC011	Principles of Manufacturing Engineering		٧				٧			٧									
MEC110	Mechanical Drawing *×			٧					٧		٧								
ELE170	Electrical Engineering	٧							٧			٧							
MEC111	Materials Science	٧	٧	٧		٧					٧	٧	٧						
BAS110	Statistics & Theory of Probability	٧							٧	٧									
BAS111	Engineering Mechanics	٧									٧	٧							
MEC112	Manufacturing Technology (1) †												٧	٧					
MEC120	Thermodynamics	٧						٧				٧							
BAS112	Differential Equations	٧						٧											
MEC121	Fluid Mechanics (1)	٧	٧						٧			٧							
MEC113	Mechanics & Testing of Materials	٧	٧	٧	٧							٧							
MEC102	Engineering Math. Using Computer	٧	٧					٧											
MEC210	Engineering Economy & Accounting	٧		٧					٧	٧									
MEC201	Theory of Measurements & Sensors	٧	٧			٧						٧			٧				
BAS211	Numerical Analysis	٧	٧			٧						٧							
MEC211	Kinematics & Dynamics of Rigid Bodies	٧						٧				٧							
MEC212	Manufacturing Technology (2) †												٧	٧	٧				
MEC213	Mechanical Design (1)			٧								٧	٧		٧				
MEC220	Heat Transfer	٧	٧			٧						٧							
MEC214	Mechanical Vibrations	٧		٧								٧							

Learn Today ... Achieve Tomorrow

Course Code	Course Name			Eng	ineerir	ng Com	peten	cies (2	018)				eering	it" Mech Compet ARS)		P	ower Er	' Mechai ngineerir ncies (Al	ng
		A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	B1	B2	B3	B4	C1	C2	C3	C4
ELE270	Electrical Machines							٧			٧	٧							
MEC221	Fluid Mechanics (2)	٧	٧			٧						٧							
MEC310	Engineering Project Management						٧			٧				٧			٧		
MEC320	Hydraulic & Pneumatic Systems										٧	٧		٧	٧	٧		٧	٧
MEC330	System Dynamics	٧										٧		٧				٧	
MEC321	Applied Thermodynamics								٧			٧	٧			٧		٧	٧
MEC322	Heat & Mass Transfer						٧					٧	٧			٧		٧	٧
MEC300	Field Training (1)													٧	٧	٧	٧		
MEC331	Automatic Control											٧	٧			٧		٧	٧
MEC324	Computer App. in Energy Field		٧						٧				٧			٧		٧	٧
MEC325	Gas Dynamics					٧						٧							٧
MEC326	Fuel & Combustion											٧				٧		٧	٧
MEC327	Renewable Energy & Environ. Prot.					٧						٧		٧		٧		٧	٧
MEC420	Internal Combustion Engines (ICE)		٧										٧			٧	٧	٧	٧
MEC421	Turbomachines	٧		٧		٧							٧	٧		٧		٧	٧
MEC422	Refrigeration & Air Conditioning										٧		٧	٧	٧	٧	٧	٧	٧
MEC400	Field Training (2)							٧			٧						٧		
MEC414	Feasibility Study of Eng. Projects			٧			٧												
MEC423	Power Stations											٧	٧			٧		٧	٧
MEC490	Graduation Project *	٧	٧	٧		٧		٧		٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
						Electiv	ve Cou	irses								-			
MEC450	Water Desalination & Wastewater Treatment												٧	٧		٧		٧	٧
MEC451	Pipeline Networks												٧		٧	٧		٧	٧
MEC452	Thermal Equipment											٧			٧	٧		٧	٧
MEC453	Aerodynamics Engineering											٧				٧		٧	٧

Learn Today ... Achieve Tomorrow

Course Code	Course Name			Eng	ineerin	ng Com	peten	cies (2	018)			-	eering	t" Mech Compet ARS)		P	cipline" ower En ompeter	gineerir	ng
		A1	A2	А3	Α4	A5	A6	A7	A8	A9	A10	B1	B2	В3	B4	C1	C2	C3	C4
MEC454	Computational Fluid Mechanics (CFD)		٧		٧								٧					٧	٧
MEC455	Numerical Methods in Energy Science					٧						٧	٧						
MEC456	Energy Management Systems											٧			٧			٧	٧
MEC457	Fire Fighting and Safety Systems														٧	٧		٧	٧
MEC458	Advanced Refrigeration & Air Conditioning														٧	٧	٧	٧	٧
MEC459	Vehicle Engineering															٧	٧	٧	٧