

Model No.11A Course Specifications : Math 2-B

Alfarabi for Quality Assurance and Accreditation System - at 8/6/2013 8:7 PM

University: Benha university

Faculty: Shoubra faculty of engineering

Department: Natural sciences

1- Course Data

Course Code : Course Title : Math 2-B Study Year : first year

EMP182
Specialization

Specialization : Teaching Hours:

Lecture : 4 Tutorial : 2 Practical : 0

Date of specifications approval: 20/6/2010

2- Course Aim

For students undertaking this course, the aims are to:

- 2.1- Recognize the essential information as introduction about Advanced Calculus and their applications in Engineering.
- 2.2- Recognize the basic concepts and properties of some special functions.
- 2.3- Solve the ordinary differential equations via power series.
- 2.4- Recognize the basic concepts about Laplace Transformations and Inverse Laplace.
- 2.5- Solve differential equations via Laplace transformations.
- 2.6- Solve Partial Differential Equations.
- 2.7- Interpret the methods of solution of Linear System of differential equations.
- 2.8- Recognize the technology of using all the above items

3- Intended Learning Outcomes of Course (ILOS)

a- Knowledge and Understanding

On completing this course, students will be able to:

- a-1 describe concepts and theories of mathematics and sciences, appropriate to Series solution of ordinary differential equations. (a-1)
- a-2 -mention methodologies of solving engineering problems. (a-5)

b- Intellectual Skills

At the end of this course, the students will be able to:

- b 1 choose appropriate mathematical and computer-based methods for modeling and analyzing problems. (b-1)
- b-2 create appropriate solutions for Laplace and Inverse Laplace transformations (b-2)
- $\mbox{b-3}$ -evaluate engineering problems, often on the basis of limited and possib contradicting information. (b- 7)

c- Professional Skills

On completing this course, the students are expected to be able to:

- c-1 use knowledge of mathematics, science, information technology, design, business context and engineering practice to solve engineering problems. (c-1)
- c-2 perform numerical modeling methods to engineering problems. (c-7)

4- Course Contents

No.	Topics				
1	Series solution of ordinary differential equations				
2	Gamma and Beta functions				
3	Bessel's functions				
4	Legendre's polynomials				
5	Laplace and Inverse Laplace transformations				
6	Solution of differential equations				
7	First order partial differential equations				
8	Second order partial differential equations				
9	Heat equations				
10	Wave equations				
11	Systems of linear ordinary differential equations				

5- Teaching and Learning Methods

- 5.1- Lectures
- 5.2- Tutorials

6- Teaching and Learning Methods of Disables

6.1- Tutorials

7- Student Assessment

a- Student Assessment Methods

1	Assignment to assess a1,a2-b1,b2,b3-c1,c2		
2	Mid-term exam to assess a1,a2-b1,b2,b3		
3	Final exam to assess a1,a2-b1,b2,b3-c1		

b- Assessment Schedule

No.	Assessment	Week
1	Assignment	3,5,7,9 and 11
2	Mid-term exam	8
3	Final exam	15

c- Weighting of Assessments

Assessment	Weight
Midterm Examination	20 %
Final Term Examination	66 %
Oral Examination	0 %
Practical Examination	0 %
Semester work	0 %
Other types of assessment	14 %
Total	100 %

8- List of References

a- Course Notes

1- Lecture material and training sheets

b-Books

1- Engineering Mathematics, Fifth Edition, K. A. Stroud, Industrial Press. Inc., New York, 2001.

c- Recommended Books

1- Advanced Engineering Mathematics, E. Kreyszig, John Wiley and Sons, New York 1999.

d- Web Sites

- 1- www.MathematicsResearch.com
- 2- www.Google.com

Course Coordinator : Dr: Zaki Ahmed Zaki

Head of Department :Prof: sayed ward

Matrix of Knowledge and Skills of the course

No.	Tonics	woolz	Racic	Intellectual	Professional
NO.	Topics	week	Basic	milenectuai	Professional

			Knowledge	Skills	Skills
1	Series solution of ordinary differential	1	a1		c2
	equations				
2	Series solution of	2	a1		c2
_	ordinary differential	_	u I		62
	equations				
3	Gamma and Beta	3	a2	b1	
	functions				
4	Gamma and Beta	4	a2	b1	
	functions, Bessel's				
	functions and				
	Legendre's				
	polynomials				
5	Bessel's functions and	5	a2	b1	
	Legendre's				
	polynomials				
6	Laplace and Inverse	6	a1	b3	c1
	Laplace				
	transformations		4	1.0	1
7	Laplace and Inverse	7	a1	b3	c1
	Laplace transformations				
8	Solution of differential	9		b2	
0	equations	9		02	
9	First order and	10	a1	b1	
	second order partial	10	aı	01	
	differential equations				
10	First order and	11	a1	b1	
	second order partial			-	
	differential equations				
11	Heat and wave	12	a2		c2
	equations				
12	Heat and wave	13	a2		c2
	equations				
13	Systems of linear	14	a1		
	ordinary differential				
	equations				

Course Coordinator: Dr: Zaki Ahmed Zaki

Head of Department :Prof: sayed ward