

Model No12 Course Specifications : Electromagnetic Fundamentals

University : Benha university Faculty : Faculty of Engineering at Shoubra Department : Electrical Engineering Department

1- Course Data

Course Code: ECE 212Course Title: Electromagnetic FundamentalsStudy Year: Second YearTeaching Hours:Lecture : 4Tutorial : 2

2- Course Aim

For students undertaking this course, the aims are to:

- 2.1. List the broad classifications of Electromagnetic Fields
- 2.2. Demonstrate Faraday's laws and Poisson's equation Understand continuity equation and Maxwell's equations of Electric & magnetic fields
- 2.3. Demonstrate the analogy between Electric & Magnetic Fields

3- Intended Learning Outcomes of Course (ILOs)

a- Knowledge and Understanding

On completing this course, students will be able to:

- a1. Define concepts and theories of electric and magnetic fields (a1)
- a2. Define concepts and theories for Faraday's laws and Poisson's equation (a2)
- **a3.** Demonstrate methodologies of data collection interpretation and solving problems related to electric and magnetic fields **(a6)**
- a4. Define current engineering technologies for electric and magnetic fields (a9)

b- Intellectual Skills

At the end of this course, the students will be able to:

- b1. Select appropriate mathematical methods (such as gradient , divergence and curl) for modeling electromagnetic fields (b1)
- **b2.** Select appropriate solutions for problems related to electromagnetic fields based on analytical thinking **(b3)**
- b3. Think in a creative and innovative way in problem solving especially in electromagnetic (b4)
- b4. Assess and evaluate the characteristics of electric and magnetic field (b6)
- **b5.** Solve problems related to electric and magnetic field, often on the basis of limited information **(b8)**

c- Professional Skills

On completing this course, the students are expected to be able to:

c1. Apply knowledge of mathematics, science and engineering practice to solve problems related to electric and magnetic fields **(c1)**

c2. Use appropriate mathematical methods including differential equations and vector calculus. (c13)

d- General Skills

At the end of this course, the students will be able to:

- d1. Collaborate effectively within teams (d1)
- d2. Work in stressful environment and within restrictions (d2)
- d3. Communicate effectively (d3)

4- Course Content

	Topics	No of hours
1	Vector analysis and coordinate systems used in EM fields	8
2	Basic relations of static electric field Gauss' law Laplace eq	8
3	Divergence theorem, electro-static energy	8
4	Magnetic induction Faraday's law,	4
5	Laws analogy between electric & magnetic field	8
6	Time continuity eq, Boundary condition	8
7	Time alternating fields, Maxwell's eq	4

5- Teaching and Learning Methods

- 1. Modified lectures
- 2. Class activity
- 3. Tutorial

6- Teaching and Learning Methods of Disables

1. Lake of projectors in tutorial rooms

7- Student Assessment

a- Student Assessment Methods

- 1. Assignments
- 2. Quizzes
- 3. Midterm Exam
- 4. Reports
- 5. Oral Exam
- 6. Final Exam

b- Assessment Schedule

	Assessment	Weeks
1	Assignments	3,10
2	Quizzes	4,11
3	Midterm Exam	8
4	Reports	6
5	Oral Exam	14
6	Final Exam	15

c- Weighting of Assessments

	Assessment	Weight
1	Assignments	
2	Quizzes	30 of 150
3	Midterm Exam	20 %
4	Reports	
5	Oral Exam	30 of 150 20 %
6	Final Exam	90 of 150 60 %

8-List of References

a- Course Notes

1. Electromagnetic fields by Dr Hanaa M Raafat

b- Textbooks

- 1. Clayton R Paul, Introduction to Electromagnetic fields, McGraw-Hill, 1987
- 2. William H Hayt, Engineering Electromagnetic, McGraw-Hill, 2001

Model No11(A) Course Specifications : Electromagnetic Fundamentals

University : Benha university Faculty : Faculty of Engineering at Shoubra Department : Electrical Engineering Department

			Bacic	Intellectual	Professional	General
	Topics	wook	Basic	Skille	Ckille	Skille
	ισμις	Week	Knowledge	SKIIIS	SKIIIS	JKIIIS
	Vector analysis and coordinate	12	a1 a2 a3	h1 h2	c1 c2	
1	systems used in EM fields	1,2	41, 42, 45	01, 02		
	Basic relations of static electric field.	27	21 22 24	h1 h7	c1	
2	Gauss' law. Laplace eq.	5,4	d1, d3 ,a4	U1, U2	LT	
	Divergence theorem, electro-static	ГC	-2 -4	h2	-1	
3	energy	5,0	a3, a4	03	CT	
4	Magnetic induction. Faraday's law,	7	a3, a4	b3, b5	c2	
5	Mid term exam	8	a2,a3,a4	b1, b5		
	Laws analogy between electric &	0.10	22.24	64 b5	c.)	
6	magnetic field.	9,10	d3, d4	N4, NS	ίz	
	Time continuity eq., Boundary	11 12	21	h2	c1	
7	condition	11,12	ат	02	LT	
8	Time alternating fields, Maxwell's eq.	13	a4	b3	c1,c2	
9	Oral exam	14	a1,a2,a3,a4	b1,b2,b3,b4,b5	c1,c2	d1,d2,d3
10	Final exam	15	a1,a2,a3,a4	b1,b2,b3,b4,b5		

Matrix of Knowledge and Skills of the course

Matrix of Course Content and ILO's

Course Title: Electromagnetic Fundar	nentals	Code: ECE 212
Lecture: 4 Tutorials: 2	Practical: -	Total: 6
Program on which the course is give	n: BSc Electrical Eng	gineering (Communications)
Major or minor element of program	: Major	
Department offering the program:	Electrical Enginee	ering Department
Department offering the course:	Electrical Enginee	ering Department
Academic year / level:	Second Year / Fir	st Semester 2014-2015
Date of specifications approval: 2	20/6/2010	

Course content	a1	a2	a3	a4	b1	b2	b3	b4	b5	c1	c2	d1	d2	d3
Vector analysis and coordinate systems used in	✓	✓	\checkmark		\checkmark	✓				✓	✓	✓	\checkmark	
EM fields														
Basic relations of static electric field Gauss' law	✓		\checkmark	✓	\checkmark	✓				✓			✓	
Laplace eq														
Divergence theorem, electro-static energy			✓	~			✓			✓			~	
Magnetic induction Faraday's law,			\checkmark	✓			✓		\checkmark		\checkmark	\checkmark		\checkmark
Laws analogy between electric & magnetic field			\checkmark	✓				\checkmark	\checkmark		\checkmark		\checkmark	
Time continuity eq, Boundary condition	✓					\checkmark				✓				\checkmark
Time alternating fields, Maxwell's eq				\checkmark			\checkmark			\checkmark	\checkmark			

Matrix of course aims and ILO's

Course Title: Electromagnetic Fundame	entals	Code: ECE 212
Lecture: 4 Tutorials: 2	Practical: -	Total: 6
Program on which the course is given	BSc Electrical Eng	gineering (Communications)
Major or minor element of program:	Major	
Department offering the program:	Electrical Engineer	ring Department
Department offering the course:	Electrical Engineer	ring Department
Academic year / level:	Second Year / Fir	st Semester 2014-2015
Date of specifications approval: 20	/6/2010	

Course aims	a1	a2	a3	a4	b1	b2	b3	b4	b5	c1	c2	d1	d2	d3
Recognize the broad classifications of	✓	✓	✓	✓	✓	✓	\checkmark			<	<	\checkmark		
Electromagnetic Fields														
Demonstrate Faraday's laws and Poisson's equation	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Understand continuity equation and Maxwell's														
equations of Electric & magnetic fields														
Recognize the analogy between Electric & Magnetic	\checkmark		\checkmark	\checkmark				\checkmark	\checkmark		\checkmark		\checkmark	
Fields														

Course Instructor: Dr Hanaa Mohammed Raafat

Head of department: Prof Dr Sayed Abo-Elsood Ward