

Model No.12 Course Specifications: Automatic Control

Shoubra Faculty of Engineering

University: Benha university

Faculty: Shoubra Faculty of Engineering

Department: Electrical Engineering Department

1- Course Data

Course Code: ECE312c Course Title: Automatic Control Study Year: Third Year

Specialization : Teaching Hours:

Lecture: 3 Tutorial: 2 Practical:

2- Course Aim

By the end of the course the students will be able to:

- 2.1 Demonstrate the broad classifications of automatic control systems.
- 2.2 Carry out mathematical modeling computations in automatic control systems.
- 2.3 Analyze the behaviour of control systems by different methods of analysis and design .

3. Intended Learning outcomes of Course (ILOs)

By completion of the course, the student should be able to:

a. Knowledge and Understanding:

- a.1) Concepts and theories of mathematics and sciences, appropriate to the control.
- a.2) Basics of information and communication technology (ICT).
- a.4) Principles of design including elements design, process and/or a system related to automatic control.
- a.5) Methodologies of solving engineering problems, data collection interpretation.
- a.8) Current engineering technologies as related to automatic control.
- a.16) Principles of analyzing and design of control systems with performance evaluation.

b. Intellectual Skills

- b.1) Select appropriate mathematical and computer-based methods for modeling and analyzing problems.
- b.2) Select appropriate solutions for engineering problems based on analytical thinking.
- b.3) Think in a creative and innovative way in problem solving and design.
- b.4) Combine, exchange, and assess different ideas, views, and knowledge from a range of sources.
- b.5) Assess and evaluate the characteristics and performance of components, systems and processes.
- b.11) Analyze results of numerical models and appreciate their limitations.
- b.13) Develop innovative solutions for the practical industrial problems.

c. Professional and Practical Skills

- c.1) Apply knowledge of mathematics, science, information technology, design, business context and engineering practice to solve engineering problems.
- c.3) Create and/or re-design a process, component or system, and carry out specialized engineering designs.
- c.6) Use a wide range of analytical tools, techniques, equipment, and software packages pertaining to automatic control and develop required computer programs.
- c.7) Apply numerical modeling methods to engineering problems.
- c.13) Use appropriate mathematical methods or IT tools.

d. General and Transferable Skills

- d.1) Collaborate effectively within multidisciplinary team.
- d.2) Work in stressful environment and within constraints.
- d.3) Communicate effectively
- d.6) Effectively manage tasks, time, and resources.
- d.7) Search for information and engage in life-long self learning automatic control.
- d.8) Acquire entrepreneurial skills.
- d.9) Refer to relevant literatures.
- d.12) Develop skills related to creative and critical thinking as well as problem solving.

4- Course Contents

No.	Topics	No of hours
1	Introduction to control system	5
2	Mathematical fundamentals	5
3	open loop and closed - loop control system.	5
4	Transfer functions and block diagrams	5
5	Signal flow graph models	5

6	Introduction to control system	5
7	Mathematical fundamentals	5
8	Root Locus Techniques	5
9	Design of Controller using Root locus techniques	5
10	Time Response of Control Systems	5
11	Frequency Response of Control Systems	5
12	Nyquist Stability Criterion	5
13	Control Systems applications communication systems	5

5. Teaching and Learning Methods

- 5.1 Modified Lectures5.2 Practical training / laboratory
- 5.3 Class activity
- 5.4 Assignments / homework

6- Teaching and Learning Methods of Disables

Not available

7- Student Assessment

a- Student Assessment Methods

1	Assignments to assess knowledge and intellectual skills.
2	Quiz to assess , intellectual and professional skills
3	Mid-term exam to assess knowledge, and intellectual skills
4	Final exam to assess knowledge, intellectual skills.

b- Assessment Schedule

No.	Assessment	Week
1	Assignments	3, 5, 10, 12, 13

2	Assessment 2 Quizzes	4, 6 , 9, 11,
3	Assessment 3 Mid-term exam	7

c- Weighting of Assessments

Assessment	Weight
Midterm Examination	15 %
Final Term Examination	64 %
Oral Examination	0 %
Practical Examination	0 %
Semester work	15 %
Other types of assessment	6 %
Total	100 %

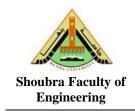
8. Course Notes

8.1 Handouts prepared by instructor.

8.2 Essential Books (Text Books)

- * A textbook of Automatic Control Systems B. C. Kuo, 2004
- * Feedback and control systems Shaum's series .

8.3 Recommended books


Control System Engineering by K. Ogata, 2007

9. Facilities Required for Teaching and learning

- 9.1 Lecture room equipped with overhead projector
- 9.2 Presentation board, computer and data show

Course coordinator: Prof. Dr. Wagdy Mohamed Mansour

Course instructor: Dr. Ayman Yousef Head of department: Prof. Dr Sayed Abu-Elsood Ward

Model No.11A Course Specifications : Automatic Control

Matrix of Knowledge and Skills of the course

No.	Topics	week	Basic Knowledge	Intellectual Skills	Professional Skills	General Skills
1	Introduction to control system	1	a1	b1	c1	
2	Mathematical fundamentals	2	a1, a2	b1	c1	
3	Open loop and closed - loop control system.	3	a1 , a4	b1	c1	
4	Transfer functions and block diagrams	4	a1, a4	b2, b5	c1	
5	Signal flow graph models- control systems components	5	a1 , a4	b1, b4	c1	
6	control systems components	6	a4, a5, a16	b11, b13	c1	
7	Steady-state error and transient response of control systems	7	a1, a4	b3, b5	c1 , c3	
8	Midterm exam	8	a4, a5, a16	b2, b4, b5, b11, b13		d2
9	Root Locus Techniques	9	a5	b2	c1	
10	Design of Controller using Root locus techniques	10	a1, a8	b2, b5	c1	
11	Time Response of Control Systems	11	a4, a8	b7, b11	c6 , c7	
12	Frequency Response of Control Systems	12	a4, a8	b7, b11	c6 , c7	
13	Nyquist Stability Criterion	13	a5, a8	b4	c3, c13	
14	Control Systems applications communication systems	14	a5 , a8	b4	c3, c13	
15	Final Exam	15	a2, a4, a5, a8	b1, b2, b5		d2

Course coordinator: Prof. Dr. Wagdy Mohamed Mansour

Course instructor: Dr. Mahmoud Soliman

Head of department: Prof. Dr Sayed Abu-Elsood Ward