

Course Specifications (2014-2015)

Model No.12

Course Specifications: Industrial Process Control

University: Benha University

Faculty: Faculty of Engineering at Shoubra

Department offering the program: Mechanical Engineering Department **Department offering the course:** Mechanical Engineering Department

1- Course Data

Course Code: MDP454 Course Title: Industrial Process Control

Specialization: production Mechanical **Course Type:** Elective **Study Year:** Fourth Year

Engineering department

Teaching Hours: Lecture: 3 Tutorial: 2 Practical: 0 Total: 5

2- Course Aim

For students undertaking this course, the aims are to:

- 1. Know the concepts and principles of automatic control
- 2. Understand basic principles and stability of control systems.
- 3. Provide students with solid understanding of controller designs and compensation techniques.

3- Intended Learning Outcomes of Course (ILO's)

- **a. Knowledge and Understanding Skills:** On completing this course, students will be able to demonstrate the knowledge and understanding of:
 - a.1) The basics of automatic control of industrial processes. (A.1).
 - a.2) The procedures of solving industrial process control engineering problems (A.4).
 - a.3) Recent engineering technologies related advanced automatic control (A.10).
- **b. Intellectual Skills:** At the end of this course, the students will be able to:
 - b.1) Think in a creative and innovative way in problem solving and design (B.2).
 - b.2) Assess and evaluate the characteristics and performance of control systems and industrial processes control (B.5).
 - b.3) Investigate the failure of components, systems, and processes (B.6).
 - b.4) Create efficient and methodic approaches when dealing with industrial processes control (B.1).
 - b.5) Analyze fluid power systems, subsystems and various control valves (B.8).
- **c. Practical and Professional Skills:** On completing this course, the students are expected to be able to:
 - c.1) Re-design a process or system for improvement industrial processes control (C.2).
 - c.2) Exchange knowledge and skills with engineering community and industry (C.1).
 - c.3) Write computer programs pertaining to mechanical power and energy engineering (C.7)
- **d. General and Transferable Skills:** At the end of this course, the students will be able to:
 - d. 1) Collaborate effectively within multidisciplinary team (D.1).
 - d. 2) Work in stressful environment and within constraints (D.2).
 - d. 3) Communicate effectively (D.3).
 - d. 4) Effectively manage tasks, time, and resources (D.6).

Course Specifications (2014-2015)

4- Course Contents

Week no.	Topics
1	Introduction &mathematical basic Concepts (control system, open loop, closed loop),
	Laplace Transform, D. E.
2	Modeling of physical systems Mechanical, Electrical
3	Modeling of physical systems Hydraulic, Pneumatic, Thermal
4	Transfer function, block diagram
5	Time response analysis for 1st order and 2nd order with matlab application
6	Steady state error analysis with matlab application
7	State representation with Matlab application
8	Salutation of state equations controllability and observability & Design of Industrial
	controllers P, PI, PD, PID
9	Stability analysis, Rauth arrays, Nyquist
10	Bode plot and bode stability
11	Root locus technique
12	State space representation
13	State space controllability and observability analysis
14	State space controller design

5- Teaching and Learning Methods

- 5.1 Lectures
- 5.2 Assignments / homework
- 5.3 Class activity

6- Teaching and Learning Methods of Disables

4. Nothing.

7- Student Assessment

a- Student Assessment Methods

- 1. Four assignments to assess knowledge and intellectual skills.
- 2. Two quiz to assess knowledge, intellectual and professional skills.
- 3. Mid-term exam to assess knowledge, intellectual, professional and general
- 4. Final exam to assess knowledge, intellectual, professional and general skills.

b- Assessment Schedule

	100 000 1110 1010 10110					
NO.	Assessment Week					
1	Assignments	3, 5, 9, 12				
2	Quizzes	6, 10				
3	Mid-term exam	8				
4	Final exam	15				

c- Weighting of Assessments

Assessment	Weight (%)		
Mid-Term Examination	10 %		
Final-Term Examination	64 %		
Practical Examination	15 %		
Semester work	06 %		
Other types of assessment	05 %		
Total	100		

COURSE SPECIFICATIONS (2014-2015)

8- List of References

a- Course Notes: Course notes prepared by instructor.

b- Recommended Books

1- Engineering Vibration Analysis with Application to Control Systems, Edward Arnold, 1995

c- Recommended Books

Practical Balancing of Rotating Machinery, Elsevier, 2006

d- Recommended Books

www.controlengineer.com

Course Coordinator: Prof. Dr. Saber Mahmoud Abed Rabbo Tith

Head of Department: Prof. Dr. Osama Ezzat Abdelatif

COURSE SPECIFICATIONS (2014-2015)

<u>Model No.11A</u> <u>Course Specifications: Industrial Process Control</u>

University: Benha University

Faculty: Faculty of Engineering at Shoubra

Department offering the program: Mechanical Engineering Department **Department offering the course:** Mechanical Engineering Department

	Matrix of Knowledge and Skills of the Course						
no.	Topics	Week no.	Knowledge and Understanding Skills	Intellectual Skills	Practical and Professional Skills	General and Transferable Skills	
1	Introduction &mathematical basic Concepts (control system, open loop, closed loop), Laplace Transform, D. E.	1	a1	b1			
2	Modeling of physical systems Mechanical, Electrical	2	a2	b1, b2	c1	d1	
3	Modeling of physical systems Hydraulic, Pneumatic, Thermal	3	a1, a2	b3	c2	d1, d2	
4	Transfer function, block diagram	4	a3	b4	c3	d3	
5	Time response analysis for 1st order and 2nd order with matlab application	5	a3	b2	c1,c2	d2	
6	Steady state error analysis with matlab application	6	a1, a3	b1, b2	c1	d1, d2	
7	State representation with Matlab application	7	a1, a2	b2, b3	c2, c3	d1, d2	
8	Midterm exam	8	a3	b2, b3	c3	d3	
9	Solution of state equations controllability and obserbavility & Design of Industrial controllers P, PI, PD, PID	9	a1, a2	b1, b3	c1,c2	d1, d2	
10	Stability analysis, Ruth arrays, Nyquist	10	a2, a3	b1, b2	c1	d3, d4	
11	Bode plot and bode stability	11	a1, a2	b3	c2, c3	d1, d3	
12	Root locus technique	12	a3	b4	c3	d4	
13	State space representation	13	a1, a2, a3	b1	c3	d4	
14	State space controllability and observability analysis	14	a1, a2, a3	b1, b2, b3, b4	c1,c2,c3	d1, d2, d3, d4	
15	State space controller design		a2	b3	c1,c2	d4	

Course Coordinator: Prof. Dr. Saber Mahmoud Abed Rabbo Tith

Head of Department: Prof. Dr. Osama Ezzat Abdelatif

COURSE SPECIFICATIONS (2014-2015)

Matrix of Course Aims and ILO's

Course Title: Industrial Process Control

Course Code: MDP454

Teaching Hours: Lecture: 3 Tutorial: 2 Total: 5

Major or minor element of program: Major

Program on which the course is given: B.Sc. Mechanical production Engineering

Department offering the program: Mechanical Engineering Department

Academic year / level: 2014-2015 Fourth Year / First Semester

Date of specifications approval: 2014

Course aims	Basic Knowledge	Intellectual Skills	professional Skills	General Skills
1.Know the concepts and principles of automatic control	a1,a3	b4	c2	d1
2. Understand basic principles and stability of control systems.	a1	b3	c1	d1,d2
3- Provide students with solid understanding of controller designs and compensation techniques	a2,a4	b2	c3	d1,d3

Course Coordinator: Prof. Dr. Saber Mahmoud Abed Rabbo Tith

Head of Department: Prof. Dr. Osama Ezzat Abdelatif