

Model No.12 Course Specifications (2014-2015) Engineering Mathematics (2)

University: Benha University

Faculty: Faculty of Engineering at Shoubra
 Department offering the program: Mechanical Engineering Department
 Department offering the course: Engineering Mathematics and Physics Department

1- Course Data

Course Code: EMP291			Course Title: Engineering Mathematics (2)			
Specialization:	Mechanical	Production	Course Type: Compulsory	Study Year: Second Year		
Engineering						
Teaching Hours: Lecture: 3		Tutorial: 2	Practical: 0	Total: 5		

2- Course Aims

For students undertaking this course, the aims are to be:

- 1- Recognize the basic concepts of Complex analysis.
- 2- Recognize the basic concepts of Fourier analysis.
- 3- Solve the integral equations using Fourier transform.
- 4- Apply numerical methods on solving differential equations

3- Intended Learning Outcomes of Course (ILO's)

- **a.** Knowledge and Understanding Skills: On completing this course, students will be able to demonstrate the knowledge and understanding of:
 - a.1) Concepts and theories of mathematics, appropriate to the mechanical engineering. (A.1)
 - a.2) Methodologies of solving differential equations. (A.5)
- **b.** Intellectual Skills: At the end of this course, the students will be able to:
 - b.1) Select appropriate mathematical methods for modeling and analyzing problems. (B.1)
 - b.2) Select appropriate solutions for mathematical problems based on analytical thinking. (B.2)
 - b.3) Solve engineering problems, often based on complex and Fourier analysis. (B.7)
- **c. Practical and Professional Skills:** On completing this course, the students are expected to be able to:
 - c.1) Apply knowledge of mathematics to solve problems in complex analysis, Laplace and inverse Laplace (C.1).
 - c.2) Apply numerical modeling methods to solve problems of differential equation and curve fitting (C.7).
- d. General and Transferable Skills: At the end of this course, the students will be able to:
 - d.1 Collaborate effectively within multidisciplinary team (D.1).
 - d.2 Lead and motivate individuals (D.5)

4- Course Contents

Week no.	Topics
1	Complex analysis
2	Complex analysis

3	Complex analysis
4	Complex analysis
5	Complex analysis
6	Fourier Analysis, Fourier integral
7	Fourier Analysis, Fourier integral
9	Fourier Analysis, Fourier integral
10	Fourier Analysis, Fourier integral
11	Fourier Analysis, Fourier integral
12	Partial differential equations: One dimensional wave equation
13	Partial differential equations: Separation of variables method, D'Alembert method, Heat equation
14	Partial differential equations: Laplace equation, Poisson equation

5- Teaching and Learning Methods

- 5.1 Lectures
- 5.2 Assignments/homework
- 5.3 Case study
- 5.4 Tutorial problem session

6- Teaching and Learning Methods of Disables

• Nothing.

7- Student Assessment

a- Student Assessment Methods

- 1. Four Assignments to assess knowledge and intellectual skills.
- 2. One Quiz to assess knowledge, intellectual and professional skills.
- 3. Midterm exam to assess knowledge, intellectual, professional and general skills.
- 4. Final exam to assess knowledge, intellectual, professional and general skills.

b- Assessment Schedule

NO.	Assessment	Week
1	Assignments	3, 5, 9, 11,
2	Quiz	10
3	Midterm exam	8
4	Final exam	15

c-Weighting of Assessments

Assessment	Weight (%)
Mid Term Examination	8 %
Final Term Examination	64 %
Oral Examination	0 %
Practical Examination	0 %
Semester work	12 %
Other types of assessment	16%
Total	100

8- List of References

a- Course Notes prepared by instructor

b- Recommended Books

- 1- Engineering Mathematics, Fifth Edition, K. A. Stroud, Industrial Press. Inc., New York 2001.
- 2- Advanced Engineering Mathematics, E. Kreyszig, John Wiley and Sons, New York 1999.
- 3- Engineering Mathematics, Fifth Edition, K. A. Stroud, Industrial Press. Inc., New York 2001
- 4- Advanced Engineering Mathematics, E. Kreyszig, John Wiley and Sons, New York 1999

Course Coordinator: Dr. Khaled Mamdouh Ibrahim Elnajjar

Head of Department: Prof. Dr. Osama Ezzat Abdelatif

<u>Model No.11A</u> <u>Course Specifications: Engineering Mathematics (2)</u>

University: Benha University

Faculty: Faculty of Engineering at Shoubra

Department offering the program: Mechanical Engineering Department **Department offering the course:** Engineering Mathematics and Physics Department

Matrix of Knowledge and Skills of the Course

no.	Topics	Week no.	Knowledge and Understanding	Intellectual Skills	Practical and Professional Skills	General and Transferable Skills
1	Complex analysis	1	a1	b2		d1
2	Complex analysis	2	a1	b2		d1
3	Complex analysis	3	a1	b2		d2
4	Complex analysis	4	a1	b2		d1
5	Complex analysis	5	a1	b2		d2
6	Fourier Analysis, Fourier integral	6	a2	b1	c1	
7	Fourier Analysis, Fourier integral	7	a2	b1	c1	
8	Midterm Exam	8				
9	Fourier Analysis, Fourier integral	9	a2	b1	c1	
10	Fourier Analysis, Fourier integral	10	a2	b1	c1	
11	Fourier Analysis, Fourier integral	11	a2	b1	c1	
12	Partial differential equations: One dimensional wave equation	12	a1	b3	c2	
13	Partial differential equations: Separation of variables method, D'Alembert method, Heat equation	13	al	b3	c2	
14	Partial differential equations: Laplace equation, Poisson equation	14	a1	b3	c2	
15	Final Exam	15				

Course Coordinator: Dr. Khaled Mamdouh Ibrahim ElnajjarHead of Department: Prof. Dr. Osama Ezzat Abdelatif

Matrix of Course Aims and ILO's

Course Title: Engineering Mathematics (2)

Course Code: EMP 291

Teaching Hours: Lecture: 3Tutorial: 2Total: 5

Major or minor element of program: Major

Program on which the course is given: B.Sc. Mechanical production Engineering

Department offering the program: Mechanical Engineering Department

Department offering the course: Engineering Mathematics and Physics Department

Academic year / level: 2014-2015 Second Year / First Semester

Date of specifications approval: 2014

Course aims	а	b	С	d
• Recognize the basic concepts of Complex analysis.	a1	b1		d1
• Recognize the basic concepts of Fourier analysis.		b2	c1	
			c2	
 Solve the integral equations using Fourier transform. 	a2		c1	d2
• Apply numerical methods on solving differential equations	a1	b1	c1	
	a2	b3		

Course Coordinator: Dr. Khaled Mamdouh Ibrahim ElnajjarHead of Department: Prof. Dr. Osama Ezzat Abdelatif