





# Model No.12 Course Specifications (2014-2015) Materials Science and Metallurgy

**University:** Benha University

**Faculty:** Faculty of Engineering at Shoubra

**Department offering the program:** Mechanical Engineering Department **Department offering the course**: Mechanical Engineering Department

#### 1- Course Data

Course Code: MDP123 Course Title: Materials Science and Metallurgy

Specialization: Mechanical Production Engineering Course Type: Compulsory Study Year: First year

**Teaching Hours:** Lecture: 2 Tutorial/ Practical: 2 Total: 4

#### 2- Course Aim

For students undertaking this course, the aims are to:

1. Provide the students with the basics knowledge and skills in material science and engineering.

# 3- Intended Learning Outcomes of Course (ILO'S)

#### a- Knowledge and Understanding skills:

On completing this course, students will be able to demonstrate the knowledge and understanding of:

- a1) The concepts of materials science & engineering related to the mechanical engineering. (A.1)
- a2) The characteristics of engineering materials related mechanical engineering. (A.3)
- a3) The methodologies of solving engineering materials problems. (A.5)

#### b- Intellectual Skills

At the end of this course, the students will be able to:

- b.1) Choice of the suitable solutions for engineering material problems. (B.2)
- b2) Combine and assess different ideas and knowledge of heat treatment of steels & non-ferrous alloys. (B.4)

## c- Practical and Professional Skills

On completing this course, the students are expected to be able to:

- c.1) Apply knowledge of physics and materials engineering to solve engineering material problems. (C.1)
- c.2) Combine the engineering knowledge to improve properties of engineering materials. (C.2)
- c.3) Use materials standards for choosing suitable materials. (C10)

#### d- General Skills

At the end of this course, the students will be able to:

- d.1) Collaborate effectively within multidisciplinary team. (D1)
- d.2) Communicate effectively. (D.3)
- d.3) Effectively manage tasks, time, and resources. (D.6)







#### **4- Course Contents**

| Week no. | Topics                                             |  |  |
|----------|----------------------------------------------------|--|--|
| 1        | Introduction to engineering materials.             |  |  |
| 2        | Crystal structure                                  |  |  |
| 3        | Materials Characterization using X-ray diffraction |  |  |
| 4        | Solid Solutions                                    |  |  |
| 5        | Binary phase diagram -1                            |  |  |
| 6        | Binary phase diagram -2                            |  |  |
| 7        | Iron-Carbon phase diagram                          |  |  |
| 8        | Deformation of a single crystal (Advanced)         |  |  |
| 9        | Strengthening mechanisms (Basic)                   |  |  |
| 10       | Heat treatment of metals (Ferrous alloys)          |  |  |
| 11       | Heat treatment of metals (Non-Ferrous Alloys)      |  |  |
| 12       | Study of ferrous alloys                            |  |  |
| 13       | Study of nonferrous alloys                         |  |  |

## 5- Teaching and Learning Methods

- 5.1- Lectures
- 5.2- Class activity/Tutorial
- 5.3- Assignments/homework.

# 6- Teaching and Learning Methods of Disables

• Nothing

#### 7- Student Assessment

#### a- Student Assessment Methods

- 1. Four assignments to assess knowledge and intellectual skills.
- 2. Three quizzes to assess knowledge, intellectual and professional skills.
- 3. Mid-term exam to assess knowledge, intellectual, professional and general skills.
- 4. Oral Exam to assess knowledge and intellectual skills.
- 5. Final exam to assess knowledge, intellectual, professional and general skills.

#### **b-** Assessment Schedule

| No. | Assessment    | Week       |  |  |  |  |
|-----|---------------|------------|--|--|--|--|
| 1   | Assignments   | 2, 4, 6, 9 |  |  |  |  |
| 2   | Quizzes       | 5, 7, 10   |  |  |  |  |
| 3   | Mid-term exam | 8          |  |  |  |  |
| 4   | Oral Exam     | 14         |  |  |  |  |
| 5   | Final exam    | 15         |  |  |  |  |







#### **FACULTY OF ENGINEERING AT SHOUBRA**

### c- Weighting of Assessments

| Assessment             | Weight |
|------------------------|--------|
| Mid-Term Examination   | 20 %   |
| Final-Term Examination | 60 %   |
| Oral Examination       | 10%    |
| Semester work          | 10%    |
| Total                  | 100 %  |

#### 8- List of References

#### a- Course Notes

1- Course notes prepared by instructor.

#### **b-Books**

- 1. Materials Science and Engineering (An Introduction), William D. Callister, 7th edition.
- 2. Fundamentals of Materials Science and Engineering, William F. Smith and Javad Hashemi, 4th edition, 2006, McGraw Hill.

#### **C-Web Sites**

ASME.com

ASTM.com

• ISO.com

Course Coordinator: Prof. Dr. Tarek Khalifa & Prof. Dr. Fouad Helmy Sayed

**Head of Department**: Prof. Dr./ Osama Ezzat Abdullatif







# <u>Model No.11A</u> <u>Course Specifications: Materials Science and Metallurgy</u>

University: Benha University

Faculty: Faculty of Engineering at Shoubra

**Department offering the program:** Mechanical Engineering Department **Department offering the course:** Mechanical Engineering Department

# Matrix of Knowledge and Skills of the course

| No. | Topics                    | week | Basic     | Intellectual | Professional | General |
|-----|---------------------------|------|-----------|--------------|--------------|---------|
|     | Topico                    |      | Knowledge | Skills       | Skills       | Skills  |
| 1   | Introduction to           | 1    | a1, a3    | b2           | c1           |         |
|     | engineering materials.    |      | a1, a5    | UZ.          | CI           |         |
| 2   | Crystal structure         | 2    | a2, a3,a5 | b1, b2       | c1           |         |
| 3   | Materials                 | 3    |           |              |              |         |
|     | Characterization using X- |      | a1,a5     | b2,b4        | c2           |         |
|     | ray diffraction           |      |           |              |              |         |
| 4   | Solid Solutions           | 4    | a1,a3     | b4 ,b2       | c1, c2       |         |
| 5   | Binary phase diagram -1   | 5    | a3 a1,a5  | b2           | c1           | d1      |
| 6   | Binary phase diagram -2   | 6    | a3        | b4 ,b2       | c1           | d1, d2  |
| 7   | Iron-Carbon phase         | 7    | -2 -1 -5  | 1 1412       | 1 2 10       |         |
|     | diagram                   |      | a2, a1,a5 | b4 ,b2       | c1, c2,c10   |         |
| 8   | Midterm Exam              | 8    |           |              |              |         |
| 9   | Deformation of a single   | 9    | 2.4.5     | 1410         | 4            | 14      |
|     | crystal (Advanced)        |      | a3 ,a1,a5 | b4 ,b2       | c1           | d1      |
| 10  | Strengthening             | 10   |           |              |              |         |
|     | mechanisms (Basic)        |      | a3 ,a1,a5 | b4 ,b2       | c1           | d1      |
|     |                           |      |           |              |              |         |
| 11  | Heat treatment of metals  | 11   |           | b2           | c1           | d3,d6   |
|     | (Ferrous alloys)          |      |           | DZ           | CI           | us,uo   |
| 12  | Heat treatment of metals  | 12   | -2 -5     | 1-2          | -1           | 12.16   |
|     | (Non-Ferrous Alloys)      |      | a3,a5     | b2           | c1           | d3,d6   |
| 13  | Study of Ferrous alloys   | 13   | a3,a5     | b2           | c2, c1 ,c10  | d3,d6   |
|     |                           |      |           |              | 32, 61,610   | 40,40   |
| 14  | Study of Non-Ferrous      | 14   | a3,a5     | b2           | c2, c1 ,c10  | d3,d6   |
|     | Alloys                    |      |           |              |              |         |
| 15  | Final Exam                | 15   |           |              |              |         |

Course Coordinator: Prof. Dr. Tarek Khalifa & Prof. Dr. Fouad Helmy Sayed

**Head of Department**: Prof . Dr / Osama Ezat Abd Ellatif







# Matrix of course aims and ILO's

**Course Title:** Materials Science and Metallurgy

Course Code: MDP123

**Teaching Hours:** Lecture: 2 Tutorial: 2 Total: 4

Major or minor element of program: Major.

Program on which the course is given: B.Sc. Mechanical Production Engineering

**Department offering the program:** Mechanical Engineering Department

**Department offering the course:** Mechanical Engineering Department

Academic year / level: 2014-2015 First Year / Second semester

Date of specifications approval: 2014

| Course aims                 | Basic<br>Knowledge | Intellectual<br>Skills | Professional<br>Skills | General Skills |
|-----------------------------|--------------------|------------------------|------------------------|----------------|
| Provide the students with   |                    |                        |                        |                |
| the knowledge and skills of | a1, a3, a5         | b2, b4                 | c2, c1, c10            | d1, d3, d6     |
| material science and        |                    | ·                      |                        |                |
| engineering                 |                    |                        |                        |                |

Course Coordinator: Prof. Dr. Tarek Khalifa & Prof. Dr. Fouad Helmy Sayed

**Head of Department:** Prof. Dr. Osama Ezzat Abdullatif