





Course Specification- Diploma. (2014-2015)

# Course Specifications of: Gas and Steam Turbines MEP 518

Program(s) on which the course is given: Diploma in Mechanical Power Engineering (Conventional and Renewable Power Plants) Compulsory or Elective element of program: Elective Department offering the program: Mechanical Engineering / Power Academic year / Level: year / 2014/2015 Date of specification approval: 2012

# **A. Basic Information**

| Title: Gas and Ste | eam Turbines | Code: MEP 518 |
|--------------------|--------------|---------------|
| Credit Hours: 3    |              | Lecture: 3    |
| Tutorial:          | Practical:   | Total: 3      |

# **B-** Professional Information

## 1- Overall aims of course:

By completion of the course, the student should be able to:

- 1- Classify all types of turbines.
- 2- Demonstrate principles and practice for the different types of turbines.
- 3- Recognize the physical principles for part load operation.

## 2- Intended learning outcomes of course (ILOs)

By completion of the course, the student should be able to:

## 2.1 Knowledge and understanding

- a1. Identify theories and specialized knowledge in the area of Gas and Steam Turbines study and categorize sciences related to professional practice.(2.1.1)
- a2. Describe fundamentals of quality in professional practice in the area of Gas and Steam Turbines study.( 2.1.3)
- a3. Explain the effect of professional practice on the environment and work towards its conservation and maintenance. (2.1.4)

## 2.2 Intellectual skills

- b1. Discern and analyze the problems in the area of Gas and Steam Turbines and categorize them according to their priority. (2.2.1)
- b2. Analysis and criticize research papers and topics related to gas and steam turbines. (2.2.3)
- b3. Make a good judgments in the absence of complete data with the available sources. (2.2.6)







Course Specification- Diploma. (2014-2015)

# 2.3 Professional and practical skills

- c1. Apply professional skills in Gas and Steam Turbines.(2.3.1)
- c2. Prepare professional reports. (2.3.2)

## 2.4 General and transferable skills

- d1. Assess him/her self and identify his/her own personal learning needs. (2.4.3)
- d2. Use different sources for obtaining information and knowledge. (2.4.4)

#### **3-** Contents

| Topic | Content                                             | No. of weeks | Total no. of |
|-------|-----------------------------------------------------|--------------|--------------|
| No.   |                                                     |              | hours        |
| 1     | Introduction to thermodynamics & Basic Definition   | 1            | 3            |
| 2     | Gas turbine cycles                                  | 1            | 3            |
| 3     | combined cycle (gas and steam)                      | 1            | 3            |
| 4     | Turbines                                            | 1            | 3            |
| 5     | turbine jet aircraft                                | 1            | 3            |
| 6     | jet turbine and propeller turbine                   | 2            | 6            |
| 7     | Lift increasing factors                             | 2            | 6            |
| 8     | Centrifugal compressors                             | 1            | 3            |
| 9     | Axial compressor                                    | 1            | 3            |
| 10    | Axial turbines                                      | 1            | 3            |
| 11    | Moving and stationary blades and their distribution | 1            | 3            |
| 12    | Operation at partial loads                          | 1            | 3            |
|       | Exam                                                | 1            | 3            |
|       | Total                                               | 15           | 45           |

# **4- Course Matrix**

| ILO's code number | Teaching/learning methods and strategies | Assessment methods and strategies    |
|-------------------|------------------------------------------|--------------------------------------|
| 2.1.1             | Formal lectures                          | Individual coursework                |
| 2.1.3             |                                          | assignments, quizzes, oral           |
| 2.1.4             |                                          | discussions and reports. Mid year    |
|                   |                                          | and /or final written examination is |
|                   |                                          | given.                               |
| 2.2.1             | Analysis and problem-solving skills are  | Analysis and problem-solving         |
| 2.2.3             | developed through tutorial/problem       | skills are assessed through oral and |
| 2.2.6             | sheets and small group exercises.        | written examinations.                |
|                   | Research skills are developed through a  | Design and research skills are       |
|                   | small subject oriented research project. | assessed through project write-ups,  |
|                   |                                          | coursework and project reports.      |

l







**Course Specification- Diploma.** (2014-2015)

| 2.3.1<br>2.3.2 | Experiments demonstrations, practical work, laboratory visits.                                                                                                                                                                                                                                                                                                                 | Practical skills are assessed through<br>laboratory experimental write-ups,<br>coursework exercises and reports,<br>project reports and presentations. |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.4.3<br>2.4.4 | Those skills are not explicitly taught;<br>however, along the course of study the<br>student will acquire those skills to be<br>able to perform his obligations.<br>Attendance of seminars, workshops or<br>conferences will help the student in<br>developing those skills. Presentation<br>by students (either group or individual)<br>will train students for those skills. | Project presentation                                                                                                                                   |

#### 5- Assessment schedule

| Assessment 1 | Assignments   | on weeks | 1, 3, 6     |
|--------------|---------------|----------|-------------|
| Assessment 2 | Quizzes       | on weeks | 2, 4, 9, 13 |
| Assessment 3 | Mid-term exam | on weeks | 8           |
| Assessment 3 | Oral exam     | on week  | 14          |
| Assessment 4 | Final exam    | on week  | 15          |
|              |               |          |             |

#### 6- Weighting of assessments

- 20% (60 marks) Home assignments, Quizzes, and reports
- 20% (60 marks) Mid-term examination and Oral examination
- 60% (180 marks) Final-term examination
- 100% (300 marks) Total

## 7- List of References

#### 7.1 Text books

- Turbomachinery: Design and Theory, Rama S.R. Gorla (Marcell Dekker), 2001
- Fundamentals of Fluid Mechanics, Bruce R. Munson, Donald F. Young, Theodore H. Okiishi; Wiley; 4 edition, (November 29, 2001).

#### 7.2 Recommended books; Periodicals & Websites.

· Yahoo mail group

-www.sciencedirect.com

- www.4shared.com

## 8- Facilities required for teaching and learning

Lecture room equipped with overhead projector Presentation board, computer and data show Laboratory

## Prepared by: Prof. Dr. Ahmed M. Osman

## Head of Department: Prof. Dr. Osama Ezzat Abdellatif



Lecture: 3.





Faculty of Engineering at Shoubra

Course Specification- Diploma. (2014-2015)

# Matrix of course content and ILO's

Practical: ----

Course Title: Gas and Steam Turbines

Code: MEP 518 Total: 3

Program on which the course is given: Diploma in Mechanical Power Engineering.

Major or minor element of program: Elective

Tutorial: ----

**Department offering the program** Mechanical Engineering / Power

**Department offering the course:** Mechanical Engineering / Power

Academic year / level: 2014/2015. Date of specifications approval: 2012

| Course content                         | ILO's | ILO's B | ILO's | ILO's |
|----------------------------------------|-------|---------|-------|-------|
|                                        | Α     |         | С     | D     |
| Introduction to thermodynamics & Basic | a1    |         |       | d1    |
| Definition                             |       |         |       |       |
| Gas turbine cycles                     | a1    | b1      |       |       |
| combined cycle (gas and steam)         | a2    |         |       | d2    |
| Turbines                               | a1    | b2      |       |       |
| turbine jet aircraft                   | a3    |         |       | d1    |
| jet turbine and propeller turbine      | a1    | b2,b3   |       |       |
| Lift increasing factors                |       |         | c1    | d2    |
| Centrifugal compressors                | a1    | b1      |       |       |
| Axial compressor                       | a2    | b1      |       |       |
| Axial turbines                         | a1    | b1,b3   |       |       |
| Moving and stationary blades and their |       |         | c1    | d1    |
| distribution                           |       |         |       |       |
| Operation at partial loads             |       |         | c1    | d1    |







Course Specification- Diploma. (2014-2015)

# Matrix of course aims and ILO's

| Course Title: Gas and Steam Turbines |           |            | Code: <i>MEP 518</i> |  |  |
|--------------------------------------|-----------|------------|----------------------|--|--|
| Lecture: 3                           | Tutorial: | Practical: | Total: 3             |  |  |

**Program on which the course is given:** Diploma in Mechanical Power Engineering Major or minor element of program: Elective Department offering the program: Mechanical Engineering / Power

Department offering the course: Mechanical Engineering / Power

Academic year / level: 2014/2015. Date of specifications approval: 2012

| Course ai | ms                                                         | ILO's | ILO's B | ILO's | ILO's    |
|-----------|------------------------------------------------------------|-------|---------|-------|----------|
|           |                                                            | A     |         | C     | <b>D</b> |
| 1-        | Classify all types of turbines.                            | al    |         |       | al       |
| 2-        | Demonstrate principles and                                 | a1    | b1,b3   | c2    |          |
|           | practice for the different types of                        |       |         |       |          |
|           | turbines.                                                  |       |         |       |          |
| 3-        | Recognize the physical principles for part load operation. | a1    |         |       | d2       |