

Faculty of Engineering at Shoubra

Course Specification- Diploma. (2014-2015)

Course Specifications of: Pumping and Tubes Networks MEP 520

Program(s) on which the course is given: Diploma in Mechanical Power Engineering

(Pumping and Pipe Networks Engineering)

Compulsory or Elective element of program: Compulsory

Department offering the program: Mechanical Engineering/ Power

Academic year / Level: year/ 2014/2015

Date of specification approval: 2012

A. Basic Information

Title: Pumping and Tubes Networks Code: MEP 520

Credit Hours: 3
Tutorial: Practical: Lecture: 3
Total: 3

B- Professional Information

1- Overall aims of course:

This course introduces students to:

- 1) Analyze pipe network and estimate the flow rate at different pipes.
- 2) Design different pipes in a pipe network.
- 3) Choose an appropriate pump required for the pipe network.

2- Intended learning outcomes of course (ILOs)

By completion of the course, the student should be able to:

2.1 Knowledge and understanding

- a1. Identify fundamentals and specialized knowledge pumping and tubes networks and categorize sciences related to professional practice. (2.1.1)
- a2. Discuss the effect of professional practice on the environment and work towards its conservation and maintenance. (2.1.4)
 - a3. Represent methodologies and computer tools for analysis, design and operation of tubes networks. (2.1.5)

2.2 Intellectual skills

- b1. Analyze the problems in pumping and tubes networks and categorize them according to their priority. (2.2.1)
- b2. Solve specialized problems in pumping and tubes networks. (2.2.2)
- b3. Analysis and criticize research papers and topics related to pumping and tubes networks. (2.2.3)
- b4. Assess the risks and hazards in professional practices. (2.2.4)

2.3 Professional and practical skills

- c1. Apply professional skills in pumping and tubes networks.(2.3.1)
- c2. Ability to plan and implement experiment design and evaluate testing. (2.3.3)

2.4 General and transferable skills

- d1. Use information technology in order to serve the development of professional practice. (2.4.2)
- d2. Assess self and identify own personal learning needs.(2.4.3)
- d3. Use different sources for obtaining information and knowledge. (2.4.4)
- d4. Work in a group and manage time effectively. (2.4.5)

3- Contents

Topic	Topic	No. of	Total no.
No.		weeks	of hours
1	Flow through pipes- Darcy Weisbech and Hazen	2	6
	William formulas - Friction in pipelines – laminar		
	and turbulent flow		
2	Hardy Cross method for pipe network analysis	2	6
2	Newton Methods for pipe network analysis	3	9
3	Pipe network design	3	9
4	Pump selection and operating point	2	6
5	Water Hammer - the pipelines and pumping	2	6
	stations.		
6	Exam	1	3
	Total	15	45

4- Course Matrix

ILO's	Teaching/learning methods and strategies	Assessment methods and strategies
code		
number		
2.1.1	Formal lectures, seminars, tutorials, directed	Individual coursework assignments,
2.1.4	reading, project work and independent study.	quizzes, oral discussions and reports.
2.1.5		Mid-year and /or final written
		examination is given.
2.2.1	Analysis and problem solving skills are	Analysis and problem- solving skills
2.2.2	developed through tutorial/problem sheets and	are assessed through oral and written
2.2.3	small group exercises.	examinations.
2.2.4		Design and research skills are assessed
		through project write-ups, coursework
		and project reports.
2.3.1	Experiments demonstrations, practical work,	Practical skills are assessed through
2.3.3	laboratory visits.	laboratory experimental write-ups,

		coursework exercises and reports, project reports and presentations.
2.4.2 2.4.3 2.4.4 2.4.5	Presentation by students (either group or individual) will train students for those skills.	Project presentation

5- Assessment schedule

Assessment 1	Assignments	on weeks	1, 3, 6
Assessment 2	Quizzes	on weeks	2, 4, 9 and 13
Assessment 3	Mid-term exam	on weeks	8
Assessment 3	Oral exam	on week	14
Assessment 4	Final exam	on week	15

6- Weighting of assessments

20% (60 marks) Home assignments, Quizzes, and reports 20% (60 marks) Mid-term examination and Oral examination 60% (180 marks) Final-term examination 100% (300 marks) Total

7- List of References

7.1 Text books

- Pump Handbook, Igor J. Karassik, William G. Krutzsch, Warren H. Fraser, McGraw-Hill; 3 edition, 1993
- Piping systems and Pipeline, J. Phillip Ellenberger, McGraw-Hillbook company copyright, 2005
- Hydraulics of Pipeline Systems by B.E. Larock, R.W.Jeppson and G.Z. Watters CRC, ISBN 0-8493-1806-8, TC174.L37

7.2 Periodicals & Websites.

- Yahoo mail group
- www.sciencedirect.com
- www.4shared.com

8- Facilities required for teaching and learning

Lecture room equipped with overhead projector Presentation board, computer and data show Laboratory

Prepared by: Dr. Ahmed Salah

Head of Department Prof. Dr. Osama Ezzat Abdellatif

Matrix of course content and ILO's

Course Title: Pumping and Tubes Networks Code: MEP 520

Lecture: 3 Tutorial: --- Practical: --- Total: 3

Program on which the course is given: Diploma in Mechanical Power Engineering.

Major or minor element of program: Compulsory

Department offering the program Mechanical Engineering / Power **Department offering the course:** Mechanical Engineering / Power **Academic year / level:** 2014/2015. **Date of specifications approval:** 2012

Course content	ILO's A	II O's R	ILO's C	ILO's D
		ILOSD	ILUSC	
Flow through pipes- Darcy Weisbech and Hazen	a1, a2			d1
William formulas - Friction in pipelines – laminar				
and turbulent flow				
Hardy Cross method for pipe network analysis	a3	b1, b2,		
		b3		
Newton Methods for pipe network analysis	a3	b4	c1	d2
Pipe network design		b2,b4		d3
Pump selection and operating point	a1		c1,c2	d1
Water Hammer - the pipelines and pumping stations.		b2	c1	d4

Matrix of course aims and ILO's

Course Title: Pumping and Tubes Networks Code: MEP 520

Lecture: 3 Tutorial: --- Practical: --- Total: 3

Program on which the course is given: Diploma in Mechanical Power Engineering. Major or

minor element of program: Compulsory

Department offering the program Mechanical Engineering / Power

Department offering the course: Mechanical Engineering / Power **Academic year / level:** 2014/2015. **Date of specifications approval:** 2012

Course aims	ILO's A	ILO's B	ILO's C	ILO's D
Analyze pipe network and estimate the flow rate at different pipes.	a1,a3		c1	d2
2. Design different pipes in a pipe network.	a2,a3	b4	c2	d3
3. Choose an appropriate pump required for the pipe network.		b1,b2, b3	c2	