

Faculty of Engineering at Shoubra

Course Specification- Diploma. (2014-2015)

Course Specifications of: Theory of Rotating Machinery MEP523

Program(s) on which the course is given: Diploma in Mechanical Power Engineering

(Pumping and Pipe Networks Engineering)

Compulsory or Elective element of program: Elective

Department offering the program: Mechanical Engineering / Power

Academic year / Level: year/ 2014/2015

Date of specification approval: 2012

A. Basic Information

Title: Theory of Rotating Machinery Code: MEP 523

Credit Hours: 3
Tutorial: Practical: Lecture: 3
Total: 3

B- Professional Information

1- Overall aims of course:

This course introduces students to:

- 1- Understand the energy equation for different devices such as turbines, compressors, nozzles and diffusers.
- 2- Demonstrate principles and practice for the different types of rotating machines.
- 3- Recognize the physical principles and the most important techniques of rotating machines.
- 4- Research skills are developed through a small subject oriented research project.

2- Intended learning outcomes of course (ILOs)

By completion of the course, the student should be able to:

2.1 Knowledge and understanding

- a1. Review fundamentals and specialized knowledge in theory of rotating machinery and categorize sciences related to professional practice. (2.1.1)
- a2. List principles of professional practice in theory of rotating machinery. (2.1.2)
- a3. Represent methodologies and computer tools for analysis, design and operation of rotating machines. (2.1.5)

2.2 Intellectual skills

- b1. Critically read research papers and topics related to theory of rotating machinery. (2.2.3)
- b2. Make professional decisions in the light of available information. (2.2.5)

2.3 Professional and practical skills

- c1. Apply professional skills in the area of rotating machinery. (2.3.1)
- c2. Prepare professional reports. (2.3.2)

2.4 General and transferable skills

- d1. Communicate effectively using different means. (2.4.1)
- d2. Use information technology in order to serve the development of professional practice. (2.4.2)
- d3. Use different sources for obtaining information and knowledge. (2.4.4)

3- Contents

Topic	Tonio	No. of	No. of
No.	Topic		hours
1	Introduction to rotating machinery & Basic Definition	2	6
2	Energy equation	1	3
3	Adiabatic flow through nozzles and diffusers	2	6
4	Equation of work done and efficiency in single stage turbine and	2	8
	compressor		
5	Turbines, Gas turbine, Steam turbine, Wind turbine	3	9
6	Dimensional analysis & similarity	2	6
7	Unstable flow through series of blades	2	6
	Exam	1	3
	Total	15	45

4- Course Matrix

ILO's code number	Teaching/learning methods and strategies	Assessment methods and strategies
2.1.1 2.1.2 2.1.5	Formal lectures	Individual coursework assignments, quizzes, oral discussions and reports. Mid- year and /or final written examination is given.
2.2.3 2.2.5	Analysis and problem-solving skills are developed through tutorial/problem sheets and small group exercises. Research skills are developed through a small subject oriented research project.	Analysis and problem-solving skills are assessed through oral and written examinations. Design and research skills are assessed through project writeups, coursework and project reports.
2.3.1 2.3.2	Experiments demonstrations, practical work, laboratory visits.	Practical skills are assessed through laboratory experimental write-ups, coursework exercises and reports, project reports and presentations.
2.4.1 2.4.2	Those skills are not explicitly taught; however, along the course of study the student will acquire	Project presentation

2.4.4	those skills to be able to perform his obligations.
	Attendance of seminars, workshops or conferences
	will help the student in developing those skills.
	Presentation by students (either group or individual)
	will train students for those skills.

5- Assessment schedule

Assessment 1	Assignments	on weeks	1, 3, 6
Assessment 2	Quizzes	on weeks	2, 4, 9, 13
Assessment 3	Mid-term exam	on weeks	8
Assessment 3	Oral exam	on week	14
Assessment 4	Final exam	on week	15

6- Weighting of assessments

20% (60 marks) Home assignments, Quizzes, and reports 20% (60 marks) Mid-term examination and Oral examination 60% (180 marks) Final-term examination 100% (300 marks) Total

7- List of References

7.1 Text books

- Fundamentals of Fluid Mechanics,
- Turbines, Compressors and Fans
- Fundamentals of Turbomachinery
- Basic concepts of Turbomachinery

7.2 Recommended books; Periodicals & Websites.

- Yahoo mail group
- -www.sciencedirect.com
- www.4shared.com

8- Facilities required for teaching and learning

Lecture room equipped with overhead projector Presentation board, computer and data show Laboratory

Prepared by: Dr. Mohamed Hassan

Head of Department: Prof. Osama Ezzat Abdellatif

Matrix of course content and ILO's

Course Title: Theory of Rotating Machinery Code: MEP 523

Lecture: 3. Tutorial: --- Practical: --- Total: 3

Program on which the course is given: Diploma in Mechanical Power Engineering

Major or minor element of program: Elective

Department offering the program Mechanical Engineering / Power **Department offering the course:** Mechanical Engineering / Power **Academic year / level:** 2014/2015. **Date of specifications approval:** 2012

Course content	ILO's	ILO's	ILO's	ILO's
	A	В	C	D
Introduction to rotating machinery &	a1		c1	d1
Basic Definition				
Energy equation	a1	b1	c1	
Adiabatic flow through nozzles and	a2			d1
diffusers				
Equation of work done and efficiency in	a1,a3	b2	c2	
single stage turbine and compressor				
Turbines, Gas turbine, Steam turbine,	a1			d2
Wind turbine				
Dimensional analysis & similarity	a1		c1	d3
Unstable flow through series of blades			c1	d2

Matrix of course aims and ILO's

Course Title: Theory of Rotating Machinery Code: MEP 523

Lecture: 3. Tutorial: ---- Practical: ---- Total: 3

Program on which the course is given: Diploma in Mechanical Power Engineering

Major or minor element of program: Elective

Department offering the program Mechanical Engineering / Power

Department offering the course: Mechanical Engineering / Power **Academic year / level:** 2014/2015. **Date of specifications approval:** 2012

Course aims		ILO's B	ILO's C	ILO's D
 Understand the energy equation for diffed devices such as turbines, compressors, nozzles and diffusers. 	rent a1, a2			d1
2- Demonstrate principles and practice for the different types of rotating machines.	a2	b1	c1	
3- Recognize the physical principles and the most important techniques of rotating machines.	a1,a3	b1		
4- Research skills are developed through a subject oriented research project.	nall		c2	d2