

Course Specifications of: Advanced Fluid Mechanics MEP 604

Program(s) on which the course is given : Post Graduate M. Eng. in Mechanical Power Engineering Compulsory or Elective element of program: Elective Department offering the program: Mechanical Engineering / Power Academic year / Level: year/ 2014-2015 Date of specification approval: 2012

A. Basic Information

Title: Advanced Fluid Mechanics Credit Hours:3 Tutorial: Practical: Code: MEP 604 Lecture: 3 Total: 3

B- Professional Information

1- Overall aims of course:

This course introduces students to:

- 1. Know the fundamental equations governing fluid flow.
- 2. Specify boundary conditions required of solving basic equations.
- 3. Understand research papers in fluid mechanics.

2- Intended learning outcomes of course (ILOs)

By completion of the course, the student should be able to:

2.1 Knowledge and understanding

- a1. Define theories, fundamentals and specialized knowledge in fluid mechanics. (2.1.1)
- a2. Outline the scientific developments in area of fluid mechanics. (2.1.3)
- a3. Illustrate the methodologies used in computational and experimental research. (2.1.7)

2.2 Intellectual skills

- b1. Analyze and assess information in fluid mechanics and draw analogies to solve problems.(2.2.1)
- b2. Solve problems in spite of the lack of some data.(2.2.2)
- b3. Illustrate different knowledge sources to solve problems.(2.2.3)
- b4. Conduct a research study and/or write a scientific essay about a research problem.(2.2.4)

2.3 Professional and practical skills

- c1. Write and evaluate professional reports.(2.3.2)
- c2. Assess methods and current tools in the area of fluid mechanics.(2.3.3)
- c3. Find optimal design for MPE projects under given constraints.(2.3.4)
- c4. Use the various software programs for simulating the system features.(2.3.6)

2.4 General and transferable skills

- d1. Use different sources for obtaining information and knowledge.(2.4.4)
- d2. Work in a group and Lead a team in familiar professional contexts. (2.4.6)
- d3. Conduct self-learning and continuous education practices.(2.4.8)

3- Contents

Topic	Topic	No. of	Total no.
No.		weeks	of hours
1	Fundamentals of fluid mechanics, Basic Equations in	2	6
	Differential forms		
2	Exact Solutions, Applications of conservation	3	9
	equations of mass and momentum and energy		
3	Approximate Solutions	2	6
4	Dimensional analysis and dynamic similarity	1	3
5	Turbulence and laminar flow, Transition to	3	9
	Turbulence		
6	Turbulence Models, Boundary layers.	3	9
7	Exam	1	3
	Total	15	45

4- Course Matrix

ILO's	Teaching/learning methods and strategies	Assessment methods and strategies
code		
number		
2.1.1 2.1.3 2.1.7	Formal lectures, seminars, tutorials, directed reading, project work and independent study.	Individual coursework assignments, quizzes, oral discussions and reports. Mid-year and /or final written
		examination is given.
2.2.1 2. 2.2 2. 2.3 2. 2.4	Analysis and problem-solving skills are developed through tutorial/problem sheets and small group exercises. Research skills are developed through a small subject oriented research project.	Analysis and problem-solving skills are assessed through oral and written examinations. Design and research skills are assessed through project write-ups, coursework and project reports.
2. 3.2 2. 3.3 2.3.4 2.3.6	Experiments demonstrations, practical work, laboratory visits.	Coursework exercises and reports, project reports and presentations.
2.4.4 2. 4.6 2.4.8	Groups of students will be assigned a research topic on fluid mechanics. Together they will have a presentation on the topic and submit a review paper on it.	Project presentation

5- Assessment schedule

Assessment 1	Assignments	on weeks	3, 6, 9
Assessment 2	Quizzes	on weeks	4,5,11, 13
Assessment 3	Mid-term exam	on weeks	7
Assessment 3	Oral exam	on week	14
Assessment 4	Final exam	on week	15

6- Weighting of assessments

20% (60 marks) Home assignments, Quizzes, and reports 20% (60 marks) Mid-term examination and Oral examination 60% (180 marks) Final-term examination 100% (300 marks) Total

7- List of References

7.1 Essential books (Text books)

Boundary Layer Theory. By Schlichting, H. ASME transaction, Journal of Fluids Engineering. Advanced Fluid Mechanics by W. P. Graebel (Jul 5, 2007)

7.2 Recommended books; Periodicals & Websites.

-Engineering Fluid Mechanics by W. P. Graebel (Jan 19, 2001) -www.4shared.com -yahoo group mail

8- Facilities required for teaching and learning

Lecture room equipped with overhead projector Presentation board, computer and data show

Course coordinator: Prof. Dr. Samir Sobhy Ayad , Prof . Dr. Ahmed Reda Course instructor: Prof. Dr. Samir Sobhy Ayad , Prof . Dr. Ahmed Reda

Head of Department: Prof. Dr. Osama Ezzat Abdellatif

Matrix of course content and ILO's

Course Title: Advanced Fluid MechanicsCode: MEP 604Lecture: 3.Tutorial: ----Practical: ----Total: 3Program on which the course is given: Post Graduate M. Eng. in Power Engineering.Major or minor element of program: ElectiveDepartment offering the program: Mechanical Engineering / PowerDepartment offering the course:Mechanical Engineering / PowerPowerAcademic year / level:2014/2015. Date of specifications approval:2012

Course content	ILO's A	ILO's B	ILO's C	ILO's D
Fundamentals of fluid mechanics, Basic Equations in	a1,a2	b1	c1	d1
Differential forms				
Exact Solutions, Applications of conservation	a2	b2	c2	d1
equations of mass and momentum and energy				
Approximate Solutions	a1	b2		d3
Dimensional analysis and dynamic similarity	a2	b4	c3	
Turbulence and laminar flow, Transition to	a1,a3	b3	c4	d1
Turbulence				
Turbulence Models, Boundary layers.	al	b2		d2

Matrix of course aims and ILO's

Course Title: Advanced Fluid MechanicsCode: MEP 604Lecture: 3.Tutorial: ----Practical: ----Total: 3Program on which the course is given: Post Graduate M. Eng. in Power Engineering.Major or minor element of program: ElectiveDepartment offering the program: Mechanical Engineering / PowerDepartment offering the course:Mechanical Engineering / PowerPowerAcademic year / level:2014/2015. Date of specifications approval:2012

Course aims	ILO's A	ILO's B	ILO's C	ILO's D
1- Know the fundamental equations	a1		c1	d1,d2
governing fluid flow.				
2- Specify boundary conditions required of	a1	b2, b3	c2	d2
solving basic equations.				
3- Understand research papers in fluid	a3	b4	c1	d1
mechanics.				
4- Know the fundamental equations	a1, a2	b1,b2	c3	d3
governing fluid flow.				

5