

Course Specifications of: Advanced Thermodynamics MEP 605

Program(s) on which the course is given : Post Graduate M. Eng. in Mechanical PowerEngineeringCompulsory or Elective element of program:ElectiveDepartment offering the program:Mechanical Engineering/ PowerAcademic year / Level:year/2014/2015Date of specification approval: 20122012

A. Basic Information

Title: Advanced Th	ermodynamics	Code: MEP 605
Credit Hours: 3		Lecture: 3
Tutorial:	Practical:	Total: 3

B- Professional Information

1- Overall aims of course:

This course introduces students to:

- 1-Understand concepts and basic principles of power plant cycles
- 2- Know the basis of gas power cycles
- 3-Understand the availability, irreversibility and thermodynamics relations
- 4- Solve problems on gas and gas vapor mixtures
- 5- Understand basics of chemical reactions and combustion

2- Intended learning outcomes of course (ILOs)

By completion of the course, the student should be able to:

2.1 Knowledge and understanding

- a1. Define theories, fundamentals and specialized knowledge of thermodynamics. (2.1.1)
- a2. Search for scientific developments in the area of thermodynamics. (2.1.3)
- a3. List ethical and legal principles of professional practice in advanced thermodynamics (2.1.4)
- a4. Describe the current thermodynamic problems in critically evaluated manner. (2.1.6)

2.2 Intellectual skills

b1. Analyze and assess information in thermodynamics engineering and draw analogies to solve problems. (2.2.1)

b2. Solve problems in spite of the lack of some data.(2.2.2)

b3. Conduct a research study and/or write a scientific essay about a research problem.(2.2.4)

b4. Make professional decisions in various professional contexts.(2.2.7)

b5. Evaluate the relative enhancement in the thermodynamics process performance due to the innovative part or procedure application. (2.2.8)

2.3 Professional and practical skills

- c1. Perform basic professional and modern skills in the thermodynamics engineering. (2.3.1)
- c2. Write and evaluate professional reports.(2.3.2)

2.4 General and transferable skills

- d1. Communicate effectively using different means. (2.4.1)
- d2. Work in a group and Lead a team in familiar professional contexts. (2.4.6)
- d3. Manage time effectively.(2.4.7)
- d4. Conduct self-learning and continuous education practices. (2.4.8)

3- Contents

Topic	Торіс	No. of	No. of
No.	-	weeks	hours
1	STEAM POWER PLANTS	2	6
	Background, Introduction, Vapor Power Cycles Carnot		
	Vapor Cycle, The Rankine Cycle, The Rankine Cycle		
	Components, Effect of Pressure and TeMEPrature on		
	Rankine Cycle, The Reheat Cycle, The Regenerative		
	Cycle.		
2	GAS POWER SYSTEMS	1	3
	Internal Combustion Engines Air-Standard Analysis,		
	The air-standard Otto cycle, The air-standard Diesel		
	Cycle, The air-standard dual cycle, Ericsson cycle,		
	Stirling cycle, Brayton cycle. Comparison between the		
	air-standard cycles		
3	IRREVERSIBILITY AND AVAILABILITY	2	6
	Reversible Work, Irreversibility, Consideration		
	Processes that Involve Heat Transfer, Available and		
	Unavailable energies		
4	Mid-Term	1	3
5	THERMODYNAMIC RELATIONS	3	9
	Two Important Relations, The Maxwell Relations,		
	Clapeyron Equation, Thermodynamic Relations		
	Involving Internal Energy and entropy		
6	GAS AND GAS VAPOR MIXTURES	3	9
7	FUELS AND COMBUSTION OF FUELS	2	6
	The chemical reactions and combustion - fluid flow		
	through the nozzles – chemical and phase equilibrium for		
	ideal gas mixture during the reaction.		
	Exam	1	3
	Total	15	45

4- Course Matrix

	ILO's	Teaching/learning methods and strategies	Assessment methods and
--	-------	--	------------------------

code		strategies
number		
2.1.1	Formal lectures,	Individual coursework assignments,
2.1.3		quizzes, oral discussions and
2.1.4		reports. Mid-year and /or final
2.1.6		written examination is given.
2.2.1	Analysis and problem-solving skills are developed	Analysis and problem- solving
2.2.2	through tutorial/problem sheets and small group	skills are assessed through oral and
2.2.4	exercises. Research skills are developed through a	written examinations.
2.2.7	small subject oriented research project.	
2.2.8		
2.3.1	Experiments demonstrations, practical work,	Coursework exercises and reports,
2.3.2		project reports and presentations.
2.4.1	Those skills are not explicitly taught; however,	Project presentation
2.4.6	along the course of study the student will acquire	
2.4.7	those skills to be able to perform his obligations.	
2.4.8		

5- Assessment schedule

Assessment 1	Assignments	on weeks	2,3,4,5,7,9,11,13
Assessment 2	Quizzes	on weeks	6, 12
Assessment 3	Mid-term exam	on weeks	8
Assessment 4	Oral exam	on week	14
Assessment 5	Final exam	on week	15

6- Weighting of assessments

- 20% (60 marks) Home assignments, Quizzes, and reports
- 20% (60 marks) Mid-term examination and Oral examination
- 60% (180 marks) Final-term examination
- 100% (300 marks) Total

7- List of References

7.1 Essential books (Text books)

- Van Wylen, G. Sonntag R. and Borgnakke, C. Fundamentals of Classical Thermodynamics, John Wiley & Sons, Inc. 4th edition, 2002.
- Yunus, A. C, Thermodynamics, An Engineering Approach, McGraw-Hill, third edition, 2007

7.2 Recommended books; Periodicals & Websites.

- Holman, J. P., Thermodynamics, McGraw-Hill, Inc.2008.
- Burghardt, M. D., Engineering Thermodynamics .with Applications, Harper & Row Publishers, Inc., 2nd edition, 1982.
- www.google.com/Thermodynamics
- <u>www.4shared.com</u>

8- Facilities required for teaching and learning

Lecture room equipped with overhead projector Presentation board, computer and data show

Course coordinator: Prof. Dr. Eed A. Abdel-Hadi , Prof . Dr . Ahmed maged osman Course instructor: Prof. Dr. Eed A. Abdel-Hadi , Prof . Dr . Ahmed maged osman

Head of Department Prof. Dr. Osama Ezzat Abdellatif

Matrix of course content and ILO's

Course Title: Advanced ThermodynamicsCode: MEP 605Lecture: 3.Tutorial: ----Practical: ----Total: 3Program on which the course is given: Post Graduate M. Eng. in Power Engineering.Major or minor element of program: ElectiveDepartment offering the program: Mechanical Engineering / PowerDepartment offering the course:Mechanical Engineering / PowerPowerAcademic year / level:2014/2015. Date of specifications approval:2012

Course content	ILO's A	ILO's B	ILO's C	ILO's D
1- Introduction to thermodynamic models	a1,a4	b1	c1	d1
to calculate the thermal properties				
2- first law of thermodynamics and its applications		b2		d2
 3- second law – entropy and its applications – availability, irreversibility and its applications 	a2	b4		d4
 4- thermodynamic analysis of power and refrigeration cycles - heat 		b5	c2	
5- pumps - exergy and its applications in energy systems	a3	b3		d3

Matrix of course aims and ILO's

Course Title: Advanced ThermodynamicsCode: MEP 605Lecture: 3.Tutorial: ----Practical: ----Total: 3Program on which the course is given: Post Graduate M. Eng. in Power Engineering.Major or minor element of program: ElectiveDepartment offering the program: Mechanical Engineering / PowerDepartment offering the course:Mechanical Engineering / PowerPowerDepartment offering the course:Mechanical Engineering / PowerPowerAcademic year / level:2014/2015.Date of specifications approval:2012

Course aims	ILO's A	ILO's B	ILO's C	ILO's D
 Understand concepts and basic principles of thermodynamic models describing the properties of working fluid undergoing thermodynamic processes. 	al	b1	c1	d1
 Apply 1st law of thermodynamics on a very wide range of energy conversion processes. 	a1	b1,b5	c1	d1
3. Understand the physical meaning of entropy.	a4	b2		d2
 Apply 2nd law of thermodynamics on a very wide range of energy conversion processes. 	a2	b4	c2	d4
5. Understand the availability, and the irreversibility-Perform energy and exergy analysis for power and refrigeration cycles- Perform analysis of combiend cycles	a3	b3		d3