

Course Specifications of: Advanced Heat and Mass Transfer MEP 606

Program(s) on which the course is given : Post Graduate M. Eng. in Mechanical Power Engineering Compulsory or Elective element of program: Elective
Department offering the program: Mechanical Engineering / Power
Academic year / Level: year/ 2014/2015
Date of specification approval: 2012

A. Basic Information

Title: Advanced	Heat and Mass Transfer	Code: MEP 606
Credit Hours: 3		Lecture: 3
Tutorial:	Practical:	Total: 3

B- Professional Information

1- Overall aims of course:

Upon completing this course, it is expected that the students will be able to:

- 1- Understand the basic principles of heat transfer with a broad range of engineering applications.
- 2- Solve transient heat conduction and two-dimensional, steady-state conduction with numerical methods.
- 3- Know all the standard topics in convection heat transfer and boiling and condensation with an emphasis on physical mechanisms and practical applications.
- 4- Present empirical relations for calculating forced convection heat transfer and will also treat the subjects of natural convection and boiling and condensation heat transfer.
- 5- Know all types of heat exchangers and studies the heat pipes.

2- Intended learning outcomes of course (ILOs)

By completion of the course, the student should be able to:

2.1 Knowledge and understanding

a1. Define theories, fundamentals and principles of heat and mass transfer. (2.2.1)

a2. Outline the scientific developments in heat and mass transfer. (2.1.3)

a3. Explain the basic principles of ensuring higher levels of quality in heat and mass transfer practice. (2.1.5)

a4. Illustrate the methodologies used in computational and experimental heat and mass transfer research. (2.1.7)

2.2 Intellectual skills

b1. Analyze and assess information in the heat and mass transfer and draw analogies to Solve problems. (2.2.1)

b2. Solve problems in spite of the lack of some data. (2.2.2)

b3. Illustrate different knowledge sources to solve problems.(2.2.3)

b4. Make professional decisions in various professional contexts.(2.2.4)

2.3 Professional and practical skills

- c1. Perform basic professional and modern skills in heat and mass transfer. (2.3.1)
- c2. Plan and implement heat and mass transfer experimental design and evaluate testing. (2.3.4)

2.4 General and transferable skills

- d1. Use information technology in order to serve the development of professional practice. (2.4.2)
- d2. Use different sources for obtaining information and knowledge.(2.4.4)
- d3. Conduct self-learning and continuous education practices.(2.4.8)

3- Contents

Topic	Торіс	No. of	Total no.
No.		weeks	of hours
1	Non-uniform heat conduction – uniform heat conduction -	2	6
	multi-dimensional heat conduction –	1	3
2	Dimensionless groups	1	3
3	Convection heat transfer		
	Forced convection heat transfer	3	9
	Natural convection heat transfer	1	3
	Mid-term exam	1	3
4	Boiling and Condensation	3	6
	Pool boiling		
	Forced convection boiling		
	Condensation physical mechanisms		
	Film condensation on a Vertical plate and radial system		
	Film condensation in horizontal tubes and horizontal tube banks		
5	Heat exchanger - Heat pipes (types - the limits of - the operating fluids)		6
6	Exam		3
	Total		45

4- Course Matrix

ILO's code number	Teaching/learning methods and strategies	Assessment methods and strategies
2.1.1 2.1.3	Formal lectures	Individual coursework assignments, quizzes, oral discussions and reports.
2.1.5		Mid-year and /or final written
		examination is given.
2.1.7		examination is given.
2.2.1	Analysis and problem-solving skills are developed	Analysis and problem-solving skills are
2.2.2	through tutorial/problem sheets and small group	assessed through oral and written
2.2.3	exercises.	examinations.

2.2.4		
2.3.1	Virtual experiments demonstrations	Coursework exercises and reports,
2.3.4		project reports and presentations.
2.4.2	Those skills are not explicitly taught; however,	Project presentation
2.4.4	along the course of study the student will acquire	
2.4.8	those skills to be able to perform his obligations.	
	Attendance of seminars, workshops or	
	conferences will help the student in developing	
	those skills. Presentation by students (either	
	group or individual) will train students for those	
	skills.	

5- Assessment schedule

Assessment 1	Assignments	on weeks	2, 5, 9, 11
Assessment 2	Quizzes	on weeks	6, 12
Assessment 3	Mid-term exam	on weeks	8
Assessment 3	Oral exam	on week	14
Assessment 4	Final exam	on week	15

6- Weighting of assessments

20% (60 marks) Home assignments, Quizzes, and reports 20% (60 marks) Mid-term examination and Oral examination 60% (180 marks) Final-term examination

100% (300 marks) Total

7- List of References

7.1 Text books

-Frank P. Incropera, "Fundamentals of Heat and Mass Transfer", John Wiley & sons, 5th edition, 2002.

- J. P. Holman, "heat transfer", McGraw-Hill, Inc. 9th edition, 2003.

7.2 websites

- www.4shared.com

- Yahoo group mail
- www.sciencedirect.com

8- Facilities required for teaching and learning

Board and computer equipped with overhead projector Laboratory

Course coordinator: Prof. Dr. Mohamed Moawed, Prof. Dr. Nabil Shafieek

Course instructor: Prof. Dr. Mohamed Moawed , Prof. Dr. Nabil Shafieek

Head of Department Prof. Dr. Osama Ezzat Abdellatif

Matrix of course content and ILO's

Course Title: Advanced Heat and Mass TransferCode: MEP 606Lecture: 3Tutorial: ----Practical: ----Total: 3Program on which the course is given: Post Graduate M. Eng. in Power Engineering.Major or minor element of program: ElectiveDepartment offering the program: Mechanical Engineering / PowerDepartment offering the course:Mechanical Engineering/ PowerAcademic year / level:2014/2015. Date of specifications approval:2012

Course content	ILO's A	ILO's B	ILO's C	ILO's D
Non-uniform heat conduction – uniform heat conduction -	a1	b1		
multi-dimensional heat conduction –	a1	b1		
Dimensionless groups	a1	b2	c1	d2
Convection heat transfer	a1	b2		d1, d2
Forced convection heat transfer	a2			
Natural convection heat transfer				
Boiling and Condensation	a1	b3	c1	d3
Pool boiling	a2		c2	
Forced convection boiling	a2			
Condensation physical mechanisms	a3			
Film condensation on a Vertical plate and radial	a2			
system	a4			
Film condensation in horizontal tubes and horizontal				
tube banks				
Heat pipes (types - the limits of - the operating fluids)	a1	b3	c1	d1, d3
Non-uniform heat conduction – uniform heat conduction -	a1	b4		
multi-dimensional heat conduction –	a1	b4		d1, d3

Matrix of course aims and ILO's

Course Title: Advanced Heat and Mass TransferCode: MEP 606Lecture: 3Tutorial: ----Practical: ----Total: 3Program on which the course is given: Post Graduate M. Eng. in Power Engineering.Major or minor element of program: ElectiveTotal: 9Department offering the program: Mechanical Engineering / PowerPowerPowerDepartment offering the course: Mechanical Engineering / PowerPowerAcademic year / level: 2014/2015. Date of specifications approval: 2012

Course aims	ILO's A	ILO's B	ILO's C	ILO's D
1- Understand the basic principles of heat transfer with a	a1	b1, b2		
broad range of engineering applications.				
2- Solve transient heat conduction and two-dimensional,	a2	b2, b3		d2,d1
steady-state conduction with numerical methods.				
3- Know all the standard topics in convection heat	a1,a4	b3	c1,c2	d2
transfer and boiling and condensation with an emphasis				
on physical mechanisms and practical applications.				
4- Present empirical relations for calculating forced	a1,a3	b2,b4	c1	d2,d3
convection heat transfer and will also treat the subjects of				
natural convection and boiling and condensation heat				
transfer.				
5- Know all types of heat exchangers and studies the heat	a2, a2	b3		d2
pipes.				