

Course Specifications of: Computational Methods in Fluid Mechanics and Heat Transfer MEP 608

Program(s) on which the course is given : Post Graduate M. Eng. in Mechanical PowerEngineering Compulsory or Elective element of program: ElectiveDepartment offering the program: Mechanical Engineering / PowerAcademic year / Level:year/2014/2015Date of specification approval: 2012

A. Basic Information

Title: Computational Methods in Fluid Mechanics and Heat Transfer

Credit Hours: 3 Tutorial:

Practical:

Code: MEP 608 Lecture: 3 Total; 3

B- Professional Information

1- Overall aims of course:

By the end of the course the students will be able to:

- 1- Understand concepts and basic principles of computational methods in fluid mechanics and heat transfer.
- 2- Understand the use of numerical methods to solve linear, non-linear and partial differential equations.
- 3- Solve problems on computational and advanced numerical techniques.

2- Intended learning outcomes of course (ILOs)

By completion of the course, the student should be able to:

2.1 Knowledge and understanding

a1. Define theories, fundamentals and specialized knowledge in computational methods in fluid mechanics and heat transfer. (2.1.1)

a2. Outline the scientific developments in computational methods in fluid mechanics and heat transfer. (2.1.3)

a3. Illustrate the methodologies used in computational research. (2.1.7)

2.2 Intellectual skills

b1. Analyze and assess information of computational methods in fluid mechanics and heat transfer.(2.2.1)

b2. Conduct a research study and/or write a scientific essay about research problem in computational methods in fluid mechanics and heat transfer.(2.2.4)

b3. Plan for performance development in computational methods in fluid mechanics and heat transfer.(2.2.6)

b4. Make professional decisions in various professional contexts. (2.2.7)

Mechanical Engineering Dept Faculty of Engineering Course Specification- M. Eng. (2014-2015)

2.3 Professional and practical skills

c1. Master basic professional and modern skills in computational methods in fluid mechanics and heat transfer.(2.3.1)

c2. Assess methods and current tools in computational methods in fluid mechanics and heat transfer.(2.3.3)

c3. Use the various software programs (Ansys15 software) for simulating the fluid mechanics and heat transfer system features.(2.3.6)

2.4 General and transferable skills

d1. Use information technology Computational Methods in Fluid Mechanics and Heat Transfer. (2.4.2)

d2. Work in a group and Lead a team Computational Methods in Fluid Mechanics and Heat Transfer. (2.4.6)

d3. Manage time effectively. (2.4.7)

d4. Conduct self-learning and continuous education practices. (2.4.8)

4- Contents

Topic	Торіс	No. of	Total no.
No.		weeks	of hours
1	Introduction to numerical methods	1	3
2	Methods of solving partial differential equations in steady state	2	6
3	Methods of solving partial differential equations in unsteady state	1	3
4	Types of differential equations	2	6
5	Methods of nonlinear differential equations	1	3
6	The methods used in solving momentum and energy equation.	2	6
7	Explicit case studies to solve the flow of fluid over the surface of	2	6
	cylinder.		
8	Implicit case studies to solve the flow of fluid over the surface of	1	3
	cylinder.		
9	Alternating case studies to solve the flow of fluid over the surface of	2	6
	cylinder.		
10	Exam	1	3
11	Total	15	45

4- Course Matrix

ILO's code number	Teaching/learning methods and strategies	Assessment methods and strategies
2.1.1 2.1.2 2.1.3	Formal lectures	Individual coursework assignments, quizzes, oral discussions and reports. Mid-year and /or final written examination is given.
2.2.1 2.2.2	Analysis and problem-solving skills are developed through tutorial/problem sheets and	Analysis and problem-solving skills are assessed through oral and written

Mechanical Engineering Dept Faculty of Engineering Course Specification- M. Eng. (2014-2015)

2.2.3	small group exercises. Research skills are developed through a small subject oriented research project.	examinations. Design and research skills are assessed through project write-ups, coursework and project reports.
2.3.1 2.3.2	Experiments demonstrations, practical work, laboratory visits.	Practical skills are assessed through laboratory experimental write-ups, coursework exercises and reports, project reports and presentations.
2.4.1 2.4.2	Those skills are not explicitly taught; however, along the course of study the student will acquire those skills to be able to perform his obligations. Attendance of seminars, workshops or conferences will help the student in developing those skills. Presentation by students (either group or individual) will train students for those skills.	Project presentation

5- Assessment schedule

Assessment 1	Assignments	on weeks	1, 3, 6
Assessment 2	Quizzes	on weeks	2, 4, 9, and 13
Assessment 3	Mid-term exam	on weeks	8
Assessment 3	Oral exam	on week	14
Assessment 4	Final exam	on week	15

6- Weighting of assessments

20% (60 marks) Home assignments, Quizzes, and reports
20% (60 marks) Mid-term examination and Oral examination
60% (180 marks) Final-term examination
100% (300 marks) Total

7- List of References

7.1 Text books

- Numerical Heat Transfer and Fluid Flow By: Suhas Patankar 2002

- Numerical Methods for Engineers, Sixth Edition by Steven Chapra and Raymond Canale (Apr 20, 2009)

- Numerical Methods with MATLAB by Amos Gilat and Vish Subramaniam (Mar 22, 2010)
- Applied Computational Fluid Dynamics, 2012 Patankar, Suhas, 2012.

7.2 Websites

- * Yahoo scribd.com
- * www.sciencedirect.com

8- Facilities required for teaching and learning

Presentation board, computer and data show Laboratory

Prepared by: Prof. Dr. Mohamed Fayek

Head of Department: Prof. Dr. Osama Ezzat Abdellatif

Mechanical Engineering Dept Faculty of Engineering Course Specification- M. Eng. (2014-2015)

Matrix of course content and ILO's

Course Title: Computational Methods in Fluid Mechanics and Heat Transfer Code: MEP 608Lecture: 3.Tutorial: ----Practical: ----Total: 3Program on which the course is given: Post Graduate M. Eng. in Power Engineering.Major or minor element of program: ElectiveDepartment offering the program: Mechanical Engineering / PowerDepartment offering the course: Mechanical Engineering / PowerAcademic year / level: 2014/2015. Date of specifications approval: 20152

Course content	ILO's A	ILO's B	ILO's C	ILO's D
1. Introduction to numerical methods.	a1,a3	b1	c1	d1
2. Methods of solving partial differential		b2	c3	d2
equations in steady state.				
3. Methods of solving partial differential	a2	b4		d4
equations in unsteady state.				
4. Types of differential equations.		b2	c2	
5. Methods of nonlinear differential equations.	a3	b3		d3
6. The methods used in solving momentum and	a1	b1	c1,c2	
energy equation.				
7. Explicit case studies to solve the flow of	a1,a2	b2		d2
fluid over the surface of cylinder.				
8. Implicit case studies to solve the flow of	a3		c3	
fluid over the surface of cylinder.				
9. Alternating case studies to solve the flow of	a2	b1,b3		d1
fluid over the surface of cylinder.				

Matrix of course aims and ILO's

Course Title: Computational Methods in Fluid Mechanics and Heat Transfer Code: MEP 608Lecture: 3.Tutorial: ----Practical: ----Total: 3Program on which the course is given: Post Graduate M. Eng. in Power Engineering.Major or minor element of program: ElectiveDepartment offering the program: Mechanical Engineering / PowerDepartment offering the course: Mechanical Engineering / PowerAcademic year / level: 2014/2015. Date of specifications approval: 2012

Course aims	ILO's A	ILO's B	ILO's C	ILO's D
1- Understand concepts and basic	a1,a2	b1,b3	c1	d1
principles of computational methods in			c2	d4
fluid mechanics and heat transfer.				
2- Understand the use of numerical	a1,a3	b1,b4	c1	d1,d3
methods to solve linear, non-linear and				
partial differential equations.				
3- Solve problems on computational and	a4	b2,b1	c3	d2
advanced numerical techniques.				