

Course Specification- Ph.D (2014-2015)

Course Specifications of: Selected Topics in Power Plants (MEP 706)

Program(s) on which the course is given:Ph.D. in Mechanical Power EngineeringCompulsory or Elective element of program: ElectiveDepartment offering the program: Mechanical Engineering / powerAcademic year / Level:year/ 2014/2015Date of specification approval: 2012

A. Basic Information

Title: Selected Topics in	Power Plants	Code: MEP 706
Credit Hours: 3		Lecture: 3
Tutorial: -	Practical: -	Total: 3

B- Professional Information

1- Overall aims of course:

Upon completing this course, it is expected that the students will be able to:

1-Design, analysis, and operate of the Heat exchanger and gas turbine power plant components.

2-Know about the treatment and synthesis of electric-generating power plant technology and engineering.

3-Understand the principle analysis of theoretical, experimental, and design of heat exhanger and gas turbine power plants.

4-Introduce the gas turbine power plant enhancement by intercooler, reheat, regenration, and water injection.

2- Intended learning outcomes of course (ILOs)

By completion of the course, the student should be able to:

2.1 Knowledge and Understanding

- a1. Identify theories and principles of power stations. (2.1.1)
- a2. Demonstrate environmental impact of power plants engineering professional practice. (2.1.2)
- a3. Have a significant knowledge in the basic, methodologies, ethics at the forefront of the power plants. (2.1.4)
- a4. Describe the current power plants problems in critically evaluated manner. (2.1.6)
- a5. Capacity to understand and respect interdisciplinary and diverse cultural perspectives, and the roles and expertise of others professionals. (2.1.8)

2.2 Intellectual Skills

- b1. Analyze and assess information in power plants engineering and draw analogies to solve problems. (2.2.1)
- b2. Plan and conduct a research study and/or write a scientific essay about a research problem.(2.2.3)

Course Specification- Ph.D (2014-2015)

- b3. Assess and analyze risks in power plants field. (2.2.5)
- b4. Have creativity and make good decisions in different professional aspects.(2.2.7)
- b5. Engage effectively in the power plants philosophy. (2.2.9)
- b6. Add new information to the knowledge by carry out a research studies in the power plants field. (2.2.10)

2.3 Professional and Practical Skills

c1. Perform basic professional and modern skills in the area of power plants engineering according to the relevant codes of practice. (2.3.1)

- c2. Adaptation assessment methods and tools existing in power plants field. (2.3.3)
- c3. Ability to plan and implement experimental design and evaluate testing. (2.3.4)
- c4. Ability to identify research opportunities and use of the appropriate technological means to serve power plants practice. (2.3.9)

2.4 General and Transferable Skills

- d1. Analyzing and synthesizing information or data from a variety of sources and demonstrate effective IT capabilities to serve the development in the mechanical engineering field. (2.4.2)
- d2. Adopt self-assessment and adopt life-long learning. (2.4.5)
- d3. Demonstrate a high level of competence the management of time and scientific meetings. (2.4.7)

3- Contents

No. of weeks	of weeks Topic	
1	Steam codensers arrangment	3
2	Steam codensers design	3
3	Steam Condenser performance testing	3
4	Material of Construction	3
5	Corrosion Protection	3
6	Regenerative cycle	3
7	Feed water Heat Design	3
8	Mid term	3
9	Elements of Gas Turbine Power Plant -Power Plant	3
	Economics	
10	Auxiliary Systems	3
11	Control of Gas Turbine	3
12	Operation and Maintenance Perofrmance	3
13	Combined Cycle Power Plant	3
14	Oral Exam.	3
15	Exam.	3
	Total	45

Course Specification- Ph.D (2014-2015)

4- Course Matrix

ILO's code number	Teaching/learning methods and strategies	Assessment methods and strategies
2.1.1	Formal lectures	Individual coursework
2.1.2		assignments, quizzes, oral
2.1.4		discussions and reports. Mid-term
2.1.6		and /or final written examination is
2.1.8		given.
2.2.1, 2.2.3	Analysis and problem-solving skills are	Analysis and problem-solving
2.2.5, 2.2.7	developed through tutorial/problem sheets and	skills are assessed through oral and
2.2.8,2.2.10	small group exercises.	written examinations.
2.3.1, 2.3.3	Virtual experiments demonstrations	Coursework exercises and reports,
2.3.4, 2.3.9		project reports and presentations.
2.4.2	Those skills are not explicitly taught; however,	Project presentation
2.4.5	along the course of study the student will	
2.4.7	acquire those skills to be able to perform his	
	obligations. Attendance of seminars,	
	workshops or conferences will help the student	
	in developing those skills. Presentation by	
	students (either group or individual) will train	
	students for those skills.	

5-Assessment schedule

Assessment 1 Assignments on weeks 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13 Assessment 2 Quizzes on weeks 4, 7, 10, 13 Assessment 3 Mid-term exam on week 8 Assessment 4 Oral Exam on week 14 Assessment 5 Final exam on week 15

6- Weighting of assessments

20% (60 marks) Home assignments, Quizzes, and reports 20% (60 marks) Mid-term examination and Oral examination 60% (180 marks) Final-term examination 100% (300 marks) Total

7- List of References

7.1 Essential books (Text books)

- Power Plant Engineering by C. Elanchezhian (Apr 23, 2007)
- * Power Plant Engineering by Larry Drbal, Kayla Westra and Pat Boston (Dec 31, 1995)
- Course notes Prepared by the instructor

Course Specification- Ph.D (2014-2015)

7.2 Recommended books; Periodicals & Websites.

- Power Generation Handbook : Selection, Applications, Operation, Maintenance by Philip Kiameh (Aug 28, 2002)
- www.google.com/Thermodynamics
- www.sciencedirect.com

8- Facilities Required for Teaching and Learning Lecture room equipped with overhead projector Presentation board, computer and data show

Course coordinator: Assoc. Prof. Karam Elshazly Course instructor: Assoc. Prof. Mohamed Moawed

Head of department: Prof. Dr. Osama Ezzat

Course Specification- Ph.D (2014-2015)

Matrix of course content and ILO's

Course Title: Selected Topics in Power PlantsCode: MEP706.Lecture: 3.Tutorial: ----Practical: ----Total: 3Program on which the course is given: Ph.D. in Mechanical Power Engineering.Major or minor element of program: ElectiveDepartment offering the program: Mechanical Engineering / PowerDepartment offering the course:Mechanical Engineering / PowerAcademic year / level: year 2014/2015Date of specifications approval: 20122012

Course content	ILO's A	ILO's B	ILO's C	ILO's D
Steam codensers arrangment	a1	b1	c1	
Steam codensers design	a2	b2	c2	
Steam Condenser performance testing	a3	b4	c2	d1
Material of Construction	a2	b1	c3	
Corrosion Protection	a1	b2	c1	d3
Regenerative cycle	a3,a5	b1,b6		
Feed water Heat Design	a1	b3		d1
Elements of Gas Turbine Power Plant	a2	b4	c2	d2
Power Plant Economics	a3	b2		d1
Auxiliary Systems	a3	b3,b6		d1
Control of Gas Turbine	a2		c2,c4	d3
Operation and Maintenance Perofrmance	a1,a4		c3	d2
Combined Cycle Power Plant	a3		c2	d3

Course Specification- Ph.D (2014-2015)

Matrix of course aims and ILO's

Course Title: Selected Topics in Power PlantsCode: MEP706.Lecture: 3.Tutorial: ----Practical: ----Total: 3Program on which the course is given: Ph.D. in Mechanical Power Engineering.Major or minor element of program: ElectiveDepartment offering the program: Mechanical Engineering / PowerDepartment offering the course:Mechanical Engineering / PowerDepartment offering the course:Mechanical Engineering / PowerAcademic year / level:year 2014/2015Date of specifications approval:2012

Course aims	ILO's A	ILO's B	ILO's	ILO's D
			С	
1- Design, analysis, and operate of the Heat	a1	b1	c1	
exchanger and gas turbine power plant components.				
2-Know about the treatment and synthesis of	a2	b2	c2	d2
electric-generating power plant technology and				
engineering.				
3-Understand the principle analysis of theoretical,	a3	b3	c2	d1
experimental, and design of heat exhanger and gas				
turbine power plants.				
4-Introduce the gas turbine power plant	a2	b4	c3	d3
enhancement by intercooler, reheat, regenration,				
and water injection.				

6