| Faculty of Engineering (Shoubra)
 Benha University
 Time allowed: 3 hours | Engineering Mathematics and
 Physics Department
 $16^{\text {th }}$ of January 2011 |
| :---: | :---: | :---: |

Question 1

a- Test the following series for convergence:
i) $\sum_{n=1}^{\infty} \frac{5^{n}+7^{n}}{3^{n}+2^{n}}$
ii) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{3^{n}(2 n!)^{2}}$
iii) $\sum_{n=1}^{\infty} \frac{e^{n}}{e^{2 n}+1}$
b- Find minimal distance of the point $(0,0,-1)$ from the plane given by $z=2 x-y+1$ c- Solve the following differential equations:
i) $(y+\ln (x)) d x+\left(x+y^{2}\right) d y=0$
ii) $y^{\prime \prime}+y=\sec (x)$
iii) $y=(y / 2 x)-(x y)^{3}$

Question 2

a- Given $\mathrm{R}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$ so that $\mathrm{r}=|\mathrm{R}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$. Show that $\nabla\left(\mathrm{r}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{r}^{\mathrm{n}-2} \mathrm{R}$, for any integer n , then deduce $\operatorname{grad}(r), \operatorname{grad}\left(r^{2}\right), \operatorname{grad}(1 / r)$.
b- Define: Sequence - Cauchy sequence - Order and degree of D.E. - Homogeneous function Homogeneous D.E. (give an example for each)
c- Verify Green's Theorem to evaluate $\int x y d x+x^{2} y^{3} d y$, where c is the triangle whose vertices $(0,0),(1,0),(1,2)$ with positive orientation.

Question 3

a- Expand the function $f(x, y)=\tan ^{-1}\left(\frac{x+y}{x-y}\right)$ using Taylor series about $(0,1)$
b- Solve the D.E. $9 x^{2} y^{\prime \prime}-(4+x) y=0$ using series solution.
c- Solve the following differential equations:
i) $\frac{d y}{d x}=\frac{x+y+3}{x-y+1}$
ii) $y^{\prime}+2 y^{`}+2 y=e^{x} \sin ^{2}(2 x)$
iii) $y^{\prime \prime}+5 y^{`}+6 y=2-x+3 x^{2}$

$$
\text { P.T.O. } \longrightarrow
$$

Question 4

a- Find envelope of the function $f(x, y, t)=\frac{x}{t}+\frac{y}{1-t}=1$
b- Convert $\quad y^{`}+\phi(x) y=\psi(x) y^{n}$ into linear D.E.
c- Evaluate the following integrals
i) $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$
ii) $\int_{(0,0)}^{(1,-2)}(x+3 y) d x+(3 x-2 y) d y$ where the path c is $y^{3}+5 x^{3}+3 x=0$

Question 5

a- Determine the critical points and locate any relative minima, maxima and saddle points of function f defined by $f(x, y)=-x^{4}-y^{4}+4 x y$
b- Find the volume of the parallelepiped spanned by the vectors

$$
\mathrm{u}=(1,0,2) \quad \mathrm{v}=(0,2,3) \quad \mathrm{w}=(0,1,3)
$$

If $F=\left(x^{2} y, y z, x+z\right)$. Find (i) curl curl F; (ii) grad div F
c- Find interval of convergence for the following power series
i) $\sum_{n=1}^{\infty} \frac{3^{n}}{\left(n^{2}+1\right)(x-2)^{n}}$
ii) $\sum_{\mathrm{n}=1}^{\infty} \frac{\mathrm{ne}}{\mathrm{x}^{-\mathrm{n}^{2}}}$

Good Luck
With all best wishes to succeed
Dr. Khaled El Naggar

Model answer

Answer of Question 1

a-i) By ratio test, we get that $\lim _{n \rightarrow \infty}\left(\frac{5^{n+1}+7^{n+1}}{3^{n+1}+2^{n+1}}\right)\left(\frac{3^{n}+2^{n}}{5^{n}+7^{n}}\right)=\lim _{n \rightarrow \infty} \frac{7^{n+1}}{3^{n+1}}\left[\frac{(5 / 7)^{n+1}+1}{1+(2 / 3)^{n+1}}\right] \frac{3^{n}}{7^{n}}\left[\frac{3^{n}+2^{n}}{5^{n}+7^{n}}\right]$
$=7 / 3>1$, therefore the series is divergent.
(3 marks)
ii) Let $U_{n}=\frac{1}{3^{n}(2 n!)^{2}}, \lim _{n \rightarrow \infty} \frac{1}{3^{n}(2 n!)^{2}}=0, U_{n+1}=\frac{1}{3^{n+1}((2 n+2)!)^{2}}$, hence $U_{n}>U_{n+1}$. By using ratio test, we will get that $\sum_{n=1}^{\infty} \frac{1}{3^{n}(2 n!)^{2}}$ is convergent, so $\sum_{n=1}^{\infty} \frac{\left.(-1)^{n}\right)^{n}(2 n!)^{2}}{}$ is called absolutely convergent.
iii) Since $\int_{1}^{\infty} \frac{e^{n}}{e^{2 n}+1} d n=\left(\tan ^{-1} e^{n}\right)_{1}^{\infty}=\tan ^{-1} \infty-\tan ^{-1} e=-\tan ^{-1} e$, therefore $\sum_{n=1}^{\infty} \frac{e^{n}}{e^{2 n}+1}$ is convergent.
b) Let the point on the plane is (x, y, z) and $f(x, y, z)=x^{2}+y^{2}+(z+1)^{2}$ is the square of the distance between $(0,0,-1)$ and (x, y, z), also $\phi(x, y, z)=z-2 x+y=1$. By applying conditional extrema, we get $f_{x}=\lambda \phi_{x}, f_{y}=\lambda \phi_{y}, f_{z}=\lambda \phi_{z}$ thus $2 x=\lambda(-2), 2 y=\lambda(1)$ and $2(z+1)=\lambda(1)$, therefore $x=-2 y$ and $z=y-1$. Substitute in $\phi(x, y, z)=z-2 x+y=1$ so that $(-2 / 3,1 / 3,-2 / 3)$ is the point on plane and the minimal distance from point $(0,0,-1)=\sqrt{2 / 3}$.
(7 marks)
c-i) $(y+\ln (x)) d x \not+\left(x+y^{2}\right)$ dy $=0$ is exact D.E. since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}=1$, therefore $\frac{\partial \mathrm{f}}{\partial \mathrm{x}}=\mathrm{M}(x, y)=(\mathrm{y}+\ln (\mathrm{x})) \Rightarrow \mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{xy}+\mathrm{xLn} \mathrm{x}-\mathrm{x}+\phi(y)$, thus $\frac{\partial \mathrm{f}}{\partial \mathrm{y}}=\mathrm{x}+\phi^{\prime}(\mathrm{y})=\mathrm{x}^{2} \mathrm{y}^{2}$, hence $\phi(y)=y^{\prime \prime}+2 \mathrm{y}+2 \mathrm{y}=\mathrm{e}^{\mathrm{x}} \sin ^{2}(2 \mathrm{x}) \mathrm{y}^{3} / 3$, therefore solution is $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{xy}+\mathrm{x} \operatorname{Ln} \mathrm{x}-\mathrm{x}+\mathrm{y}^{3} / 3+\mathrm{c}$
ii) $y^{\prime \prime}+y=\sec (x)$ has homogeneous and particular solution so that the characteristic equation is $\mathrm{m}^{2}+1=0 \Rightarrow \mathrm{~m}=-\mathrm{i}$, i , thus $\mathrm{y}_{\mathrm{H}}=\left(\mathrm{c}_{1} \cos \mathrm{x}+\mathrm{c}_{2} \sin \mathrm{x}\right)$ and so the particular solution is:
$y_{P}=u_{1}(x) \cos x+u_{2}(x) \sin x$, and $y_{1}(x)=\cos x, \quad y_{2}(x)=\sin x$ where $u_{1}(x)=-\int \frac{y_{2} g(x)}{W\left(y_{1}, y_{2}\right)} d x$, $u_{2}(x)=\int \frac{y_{1} g(x)}{W\left(y_{1}, y_{2}\right)} d x$, where $W\left(y_{1}, y_{2}\right)=y_{2}^{\prime} y_{1}-y_{2} y_{1}^{\prime}=1, g(x)=$ secx, therefore:
$u_{1}(x)=-\int \frac{\sin x \sec x}{1} d x=\operatorname{Ln} \cos x$ and $u_{2}(x)=\int \frac{\cos x \sec x}{1} d x=x$
iii) $y^{`}=(y / 2 x)-(x y)^{3}$ is Bernoulli D.E., therefore $y^{-3} y^{`}-y^{-2} / 2 x=-x^{3}$. Put $z=y^{-2}$, therefore $z^{\prime}=-2 y^{-3} y^{\prime}$, thus $z^{`}+z / x=2 x^{3}$ which is linear D.E. whose solution is $z x=-2 x^{5} / 5+c$, hence $x y^{-2}=-2 x^{5} / 5+c$ is the solution of D.E.

Answer of Question 2

a- $\nabla\left(r^{n}\right)=\nabla\left(x^{2}+y^{2}+z^{2}\right)^{n / 2}=\frac{n}{2}\left(x^{2}+y^{2}+z^{2}\right)^{(n / 2)-1}(2 x \hat{i}+2 y \hat{j}+2 z k)=n r^{n-2} R$

Put $\mathrm{n}=1$, therefore $\operatorname{grad}(\mathrm{r})=\frac{1}{\mathrm{r}} \mathrm{R}$,
put $\mathrm{n}=2$, therefore $\operatorname{grad}\left(\mathrm{r}^{2}\right)=2 \mathrm{R}$,
put $\mathrm{n}=-1$, therefore $\operatorname{grad}(1 / \mathrm{r})=-\frac{1}{\mathrm{r}^{3}} \mathrm{R}$.
(7 marks)
b- Sequence: group of elements related by general term whose domain is set of positive integers.
Cauchy Sequence: Every convergent sequence is called Cauchy sequence.
Order of D.E. : is the highest derivative of D.E.
Degree of D.E. : is the power of the highest derivative of D.E.
Homogeneous function: $f(x, y)$ is homogeneous of order n if $f(t x, t y)=t^{n} f(x, y)$.
Homogeneous D.E. : is the D.E. in which the particular solution equal zero.
c-

If we express the problem in line integral, we have to divide the path into three paths $I_{1}: y=0, \quad I_{2}$ $: x=1, I_{3}: 2 x=y$ so that $d y=0, \quad d x=0,2 d x=d y$ respectively.
For path $I_{1}: \int_{I_{1}} x y d x+x^{2} y^{3} d y=\int_{0}^{1} x y d x+x^{2} y^{3} d y=0$
For path $\mathrm{I}_{2}: \int_{\mathrm{I}_{2}} x y d x+x^{2} y^{3} d y=\int_{0}^{2} y^{3} d y=4$
For path $\mathrm{I}_{3}: \int_{\mathrm{I}_{3}} x y d x+x^{2} y^{3} d y=\int_{10}^{0}\left[x(2 x)+x^{2}(2 x)^{3}(2)\right] d x=-\frac{10}{3}$, therefore

$$
\int_{c} x y d x+x^{2} y^{3} d y=I_{1}+I_{2}+I_{3}=\frac{2}{3}
$$

By using Green theorem

$$
\begin{aligned}
\int_{c} x y d x+x^{2} y^{3} d y & =\iint_{D}\left(2 x y^{3}-x\right) d x d y=\int_{x=0}^{1} \int_{y=0}^{y=2 x}\left(2 x y^{3}-x\right) d y d x \\
& =\int_{x=0}^{1}\left(8 x^{5}-2 x^{2}\right) d x=\frac{2}{3}
\end{aligned}
$$

Answer of Question 3

a- Since $f(x, y)=\tan ^{-1}\left(\frac{x+y}{x-y}\right)$, therefore $f_{x}=\frac{-y}{x^{2}+y^{2}}, f_{y}=\frac{x}{x^{2}+y^{2}}, f_{x x}=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}, f_{x x}=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}$, $f_{y y}=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}$, and $f_{x y}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}$. At $(0,1)$, therefore $f(0,1)=-\frac{\pi}{4}, f_{x}=-1, f_{y}=0, f_{x x}=f_{y y}$ $=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}=0, f_{x y}=1$, then by substituting in Taylor formula, we get: $f(x, y)=-\frac{\pi}{4}-x+x(y-1)$
b- We note that the series solution at $\mathrm{x}=\mathrm{x}_{0}, \mathrm{x}_{0} \neq 0$ still in regular case, so that the solution can be expressed as in (4), but $p(x)=0 \& \quad q(x)=\frac{-(4+x)}{9 x^{2}}$ are not analytic at $x=0$, therefore $x=0$ is called regular singular since $\mathrm{xp}(\mathrm{x}) \& \mathrm{x}^{2} \mathrm{q}(\mathrm{x})$ are analytic at $\mathrm{x}=0$, then series solution about $\mathrm{x}=0$ can be expressed in the form:
$y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+c}$,
$y^{\prime}(x)=\sum_{n=0}^{\infty}(n+c) a_{n} x^{n+c-1}$,
$y^{\prime \prime}(x)=\sum_{n=0}^{\infty}(n+c)(n+c-1) a_{n} x^{n+0-2}$,

Substitute in the above D.E., so we get

$$
9 x^{2} \sum_{n=0}^{\infty}(n+c)(n+c-1) a_{n} x^{n+c-2}-(4+x) \sum_{n=0}^{\infty} a_{n} x^{n+c}=0
$$

$9 \sum_{n=0}^{\infty}(n-c)(n+c-1) a_{n} x^{n+c}-4 \sum_{n=0}^{\infty} a_{n} x^{n+c}-\sum_{n=0}^{\infty} a_{n} x^{n+c+1}=0$
Put $\mathrm{n}=\mathrm{m}-1$ for the $3^{\text {rd }}$ term, $\mathrm{n}=\mathrm{m}$ for $1^{\text {st }}$ and $2^{\text {nd }}$ terms
We get $[9 c(c-1)-4] a_{0} x^{c}+\sum_{m=1}^{\infty}\left([9(m+c)(m+c-1)-4] a_{m}-a_{m-1}\right) x^{m+c}=0$

By comparing of coefficients of x^{c}, therefore
$[9 c(c-1)-4] \mathrm{a}_{0}=0, \quad \mathrm{a}_{0} \neq 0$, then $9 \mathrm{c}(\mathrm{c}-1)-4=0$, from which $\mathrm{c}_{1}=-1 / 3, \quad \mathrm{c}_{2}=4 / 3$, therefore $\mathrm{c}_{1}-\mathrm{c}_{2} \neq$ integer. (case 1)

By comparing of coefficients of x^{m+c}, therefore $a_{m}=\frac{a_{m-1}}{9(m+c)(m+c-1)-4}$

At $c=-1 / 3$
$a_{m}=\frac{a_{m-1}}{9 m^{2}-15 m}, m=1,2, \ldots$
$a_{1}=\frac{-a_{0}}{6}, a_{2}=\frac{a_{1}}{6}=\frac{-a_{0}}{36}, a_{3}=\frac{a_{2}}{36}=-\frac{a_{0}}{(36)^{2}}$, therefore
$U(x)=x^{-1 / 3} a_{0}\left[1-\frac{1}{6} x-\frac{1}{36} x^{2}-\frac{1}{(36)^{2}} x^{3}+\ldots.\right]$

At c $=4 / 3, \quad a_{m}=\frac{a_{m-1}}{9 \mathrm{~m}^{2}+15 \mathrm{~m}}, \mathrm{~m}=1,2, \ldots$
$a_{1}=\frac{a_{0}}{24}, a_{2}=\frac{a_{1}}{66}=\frac{a_{0}}{1584}, a_{3}=\frac{a_{2}}{126}=\frac{a_{0}}{199584}$, therefore
$V(x)=x^{4 / 3} a_{0}\left[1+\frac{1}{24} x+\frac{1}{1584} x^{2}+\frac{1}{199584} x^{3}+\ldots.\right]$, thus
$Y(x)=A a_{0} x^{-1 / 3}\left[1-\frac{1}{6} x-\frac{1}{36} x^{2}-\frac{1}{(36)^{2}} x^{3}+\ldots.\right]+$

B x ${ }^{4 / 3} \mathrm{a}_{0}\left[1+\frac{1}{24} \mathrm{x}+\frac{1}{1584} \mathrm{x}^{2}+\frac{1}{199584} \mathrm{x}^{3}+\ldots.\right]$
c- i) Since $\frac{d y}{d x}=\frac{x+y+3}{x-y+1}$ is non homogeneous equation. To solve this differential equation, we have to follow these steps
(1) We have to get the point of intersection between $x+y+3=0, x-y+1=0$ which is $(-2,-1)$,
(2) Put $x=X-2, y=Y-1, d x=d X, d y=d Y$ in the above differential equation, then $\frac{d Y}{d X}=\frac{X+Y}{X-Y}$, so it is a homogeneous equation,
(3) Put $Y=v X$, and $d Y=v d X+X d v$, therefore $\frac{v d X+X d v}{d X}=\frac{X+v X}{X-v X}=\frac{1+v}{1-v}$
(4) Integrate $\frac{d X}{X}=\frac{(1-v) d v}{1+v^{2}}$, then put $X=x+2, v=\frac{Y}{X}=\frac{y+1}{x+2}$ so that the solution of the differential equation is $\operatorname{Ln}(x+2)=\tan ^{-1}\left(\frac{\mathrm{y}+1}{\mathrm{x}+2}\right)-\frac{1}{2} \ln \left(\frac{(\mathrm{y}+1)^{2}+(\mathrm{x}+2)^{2}}{(\mathrm{x}+2)^{2}}\right)+\mathrm{C}$
ii) $y^{\prime \prime}+2 y^{\prime}+2 y=e^{x} \sin ^{2}(2 x)$ has homogeneous and particular solution so that the characteristic equation is $\mathrm{m}^{2}+2 \mathrm{~m}+2=0 \Rightarrow \mathrm{~m}=-1 \pm \mathrm{i}$, thus $\mathrm{y}_{\mathrm{H}}=\mathrm{e}^{-x}\left(\mathrm{c}_{1} \cos \mathrm{x}+\mathrm{c}_{2} \sin \mathrm{x}\right)$ and so the particular solution is $y_{P}=\frac{1}{D^{2}+2 D+2} e^{x} \sin ^{2} x=\frac{1}{D^{2}+2 D+2}\left(\frac{e^{x}}{2}\right)(1-\cos 2 x)=\frac{e^{x}}{2}\left[\frac{1}{5}-\frac{(8 \sin 2 x+\cos 2 x)}{65}\right]$
(2 marks)
iii) $y^{\prime \prime}+5 y^{`}+6 y=2-x+3 x^{2}$ has homogeneous and particular solution so that the characteristic equation is $\mathrm{m}^{2}+5 \mathrm{~m}+6=0 \Rightarrow \mathrm{~m}=-2$, -3 , thus $\mathrm{y}_{\mathrm{H}}=\mathrm{c}_{1} \mathrm{e}^{-2 \mathrm{x}}+\mathrm{c}_{2} \mathrm{e}^{-3 \mathrm{x}}$) and so the particular solution is
$y_{P}=\frac{1}{D^{2}+5 D+6}\left(2-x+3 x^{2}\right)=\frac{1}{6}\left(1+\frac{D^{2}+5 D}{6}\right)^{-1}\left(2-x+3 x^{2}\right)=\frac{1}{6}\left(6-6 x+3 x^{2}\right)$

Answer of Question 4

a- Differentiate w.r.t. t such that $-x / t^{2}-y(1-t)^{-2}(-1)=0$, therefore $t=\frac{1}{1 \pm \sqrt{\frac{y}{x}}}$, and $1-t=\frac{ \pm \sqrt{\frac{y}{x}}}{1 \pm \sqrt{\frac{y}{x}}}$, thus
the envelope is $\left(1 \pm \sqrt{\frac{y}{x}}\right)(x \pm \sqrt{x y})=1$
(7 marks)
b- A differential equation of Bernoulli type is written as $y^{`}+\phi(x) y=\psi(x) y^{n}$
This type of equation is solved via a substitution. Indeed, let $\mathrm{z}=\mathrm{y}^{1-\mathrm{n}}$, then easy calculations give $z^{\prime}=(1-n) y^{-n} y^{\prime}$ which implies $\frac{d z}{d x}+(1-n) p(x) z=(1-n) q(x)$.
c- i) Put $x=r \cos \theta, y=r \sin \theta$, therefore $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x=\int_{0}^{2 \pi} \int_{0}^{2} d r d \theta=\frac{8}{3} \pi$
ii) Since $P_{y}=3=P_{x}$, therefore the integral independent on the path, thus we can take the path as the line joining between the two end points such that $y=-2 x$, hence $d y=-2 d x$.
Therefore $\int_{(0,0)}^{(1,-2)}(x+3 y) d x+(3 x-2 y) d y=\int_{0}^{1}-19 x d x=-19 / 2$

Answer of Question 5

a- $f_{x}=-4 x^{3}+4 y=0, f_{y}=-4 y^{3}+4 x=0$, therefore $y=x^{3}$, substitute in one of the two equations, hence $(0,0),(1,1),(-1,-1)$ are the critical points and $\mathrm{f}_{\mathrm{xx}}=-12 \mathrm{x}^{2}, \mathrm{f}_{\mathrm{yy}}=-12 \mathrm{y}^{2}, \mathrm{f}_{\mathrm{xy}}=4$.

At $(0,0), \Delta=-16<0$, saddle point
$\operatorname{At}(\pm 1, \pm 1), \Delta=128>0, \mathrm{f}_{\mathrm{xx}}, \mathrm{f}_{\mathrm{yy}}<0$, maximum point
$\mathrm{b}-$ Volume $=\mathrm{u} .(\mathrm{v} \times \mathrm{w})=\left|\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 3 \\ 0 & 1 & 3\end{array}\right|=3$.
$\operatorname{Curl} F=\nabla \times F=\left|\begin{array}{ccc}\hat{i} & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^{2} y & y z & x+z\end{array}\right|=-y \hat{i}-\hat{j}-x^{2} k$

Curl Curl $F=\left|\begin{array}{ccc}\hat{i} & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y & -1 & -x^{2}\end{array}\right|=2 x \hat{j}+k$
$\operatorname{Div} F=2 x y+z+1, \operatorname{grad} \operatorname{div} F=2 y \hat{i}+2 x \hat{j}+k$
(7 marks)
c- i) Since $U_{n}=\frac{3^{n}}{\left(n^{2}+1\right)(x-2)^{n}}$, and $U_{n+1}=\frac{3^{n+1}}{\left((n+1)^{2}+1\right)(x-2)^{n+1}}$, hence the
ratio $\left|\frac{U_{n+1}}{U_{n}}\right|=\left|\frac{3^{n+1}\left(n^{2}+1\right)(x-2)^{n}}{3^{n}\left((n+1)^{2}+1\right)(x-2)^{n+1}}\right|=\left|\frac{3\left(n^{2}+1\right)}{\left((n+1)^{2}+1\right)(x-2)}\right|$, therefore
$\lim _{n \rightarrow \infty}\left|\frac{U_{n+1}}{U_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{3\left(n^{2}+1\right)}{\left((n+1)^{2}+1\right)(x-2)}\right|=\lim _{n \rightarrow \infty}\left|\frac{3}{(x-2)}\right|<1$ to be convergent, hence $|x-2|>3$, thus $x>5$ or $\mathrm{x}<-1$ is the interval of convergence.
ii) Since $U_{n}=\frac{n e^{-\mathrm{n}^{2}}}{x^{\mathrm{n}}}$, and $\mathrm{U}_{\mathrm{n}+1}=\frac{(\mathrm{n}+1) \mathrm{e}^{-(\mathrm{n}+1)^{2}}}{x^{\mathrm{n}+1}}$, hence the ratio

$$
\left.\left|\frac{\mathrm{U}_{\mathrm{n}+1}}{\mathrm{U}_{\mathrm{n}}}\right|=\left|\frac{x^{\mathrm{n}}(\mathrm{n}+1) \mathrm{e}^{-(\mathrm{n}+1)^{2}}}{x^{\mathrm{n}+1} \mathrm{n} \mathrm{e}^{-\mathrm{n}^{2}}}\right|=\frac{(\mathrm{n}+1)}{n \mathrm{e}^{(2 \mathrm{n}+1)} x} \right\rvert\,
$$

Therefore $\lim _{n \rightarrow \infty}\left|\frac{U_{n+1}}{U_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)}{n e^{(2 n+1)} x}\right|=0<1$, hence $\sum_{n=1}^{\infty} \frac{n e^{-n^{2}}}{x^{n}}$ is convergent for all x.

By Dr. Khaled El Naggar - Faculty of Engineering - Shoubra

