

Faculty of Engineering (Shoubra) Engineering Mathematics and Physics Department Mid term exam	Benha University Mechanical Department 1 st year Production Time allowed: 1 hour
Student Name in Arabic: Section:	B.N.
Correct the wrong statements giving the reason	a) <u>Wrong</u> , sequence $\{U_n\}_{n=1}^{\infty}$ is convergent, then $\lim_{n \to \infty} U_n = L$, e.g.
a) If Sequence $\{U_n\}_{n=1}^{\infty}$ is convergent, then $\lim_{n \to \infty} U_n = 0$.	$\lim_{n \to \infty} (1 + \frac{1}{n})^n = e \neq 0 \text{ and } \{(1 + \frac{1}{n})^n\}_{n=1}^{\infty} \text{ is convergent.}$
b) The Series $\sum_{n=1}^{\infty} P^{-n}$ is convergent if $ P > 1$.	b) <u>Correct</u> , Since $\sum_{n=1}^{\infty} (\frac{1}{P})^n$ is convergent if P>1 and $\sum_{n=1}^{\infty} (\frac{1}{P})^n$ is
c) The Series $\sum_{n=1}^{\infty} \frac{2n(-1)^{n-1}}{4n^2 - 3}$ is divergent. d) The differential equation $(y^{**})^2 + (y^{*})^5 + y^7 = 0$ of order 7 and degree 3.	absolutely convergent if P<-1. c) <u>Wrong</u> , $U_n = \frac{2n}{4n^2 - 3}$, $U_{n+1} = \frac{2(n+1)}{4(n+1)^2 - 3}$, therefore $U_n > U_{n+1}$ and $\lim_{n \to \infty} \frac{2n}{4n^2 - 3} = 0$ and $U_n = \frac{2n}{4n^2 - 3}$ is
 e) The envelope of circle (x-α)² +(y-α)² = P² is a line x-y = P. f) A box having a square base and an open top is to contain 108 cubic feet with base area equal <u>16</u> square feet to obtain minimum area. g) The integrating factor of the differential equation 	divergent, thus $\sum_{n=1}^{\infty} \frac{2n(-1)^{n-1}}{4n^2 - 3}$ is conditionally convergent. d) The differential equation $(y^{**})^2 + (y^{*})^5 + y^7 = 0$ of order 3 and degree 2. e) <u>Wrong, since the envelope is pair of st. lines $x-y = \pm \sqrt{2}$ P.</u>
$\frac{dy}{dx} = -\frac{3xy + y^2}{x^2 + xy}$ is y.	f) <u>Wrong</u> , $f(x,y,z) = x^2 + 4xy$, $\phi(x,y,z) = x^2y = 108$ and $f_x = \lambda \phi_x$, $f_y = \lambda \phi_y$ and $f_z = \lambda \phi_z$, therefore $\frac{1}{y} = \frac{2}{x}$, $x = 2y$, thus x=6, so the base area is 36. <u>g)</u> <u>Wrong</u> , The integrating factor of the differential equation $\frac{dy}{dx} = -\frac{3xy + y^2}{x^2 + xy}$ is x.

Faculty of Engineering (Shoubra) Engineering Mathematics and Physics Department Mid term exam

Benha University Mechanical Department 1st year Production Time allowed: 1 hour

Student Name in Arabic:	Section: B.N.
	Answer
Correct the wrong statements giving the reason	a) <u>Wrong</u> , if $\lim_{n \to \infty} U_n = 0$, the Series may be divergent
a) If Series $\sum_{n=1}^{\infty} U_n$ is divergent, then $\lim_{n \to \infty} U_n \neq 0$.	b) <u>Correct, e.g.</u> $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.
b) The Series $\sum_{n=1}^{\infty} n^{-p}$ is convergent if P > 1.	c) <u>Wrong</u> , $U_n = \frac{n^2}{n^2 + 3}$, $\lim_{n \to \infty} \frac{n^2}{n^2 + 3} = 1 \neq 0$, therefore $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n^2}{n^2 + 3}$
c) The Series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n^2}{n^2 + 3}$ is absolutely convergent.	is divergent. d) D.E. $y^{+} (y^{+})^{5} + y^{7} = 0$ of order 3 and degree 1.
d) The differential equation $y^{**} + (y^{*})^{5} + y^{7} = 0$ of order 1 a degree 3.	and e) <u>Correct</u> , since the envelope is $y^2 = 2x + 1$
e) The envelope of circle $(x - \alpha)^2 + y^2 = 2\alpha$ is a Parabola.	f) Wrong, $f(x,y,z) = xyz$, $\phi(x,y,z) = 2[xy+yz+xz] = 64$ and $f_x = \lambda \phi_x$, $f = \lambda \phi_x$ and $f = \lambda \phi_x$ therefore $x = y = z = \sqrt{32}$ thus the largest
f) A box with largest volume and the total surface area is 64 of	$f_{y} = \lambda \psi_y$ and $f_{z} = \lambda \psi_z$, therefore, $\lambda = y = z = \sqrt{\frac{3}{3}}$, thus the targest
then the largest volume equal $32/3$ cm ³ .	volume = $\sqrt{\left(\frac{32}{3}\right)^3}$.
g) The integrating factor of the differential equation $(x+2y^2)dx$	dx + dx) Wrong, The integrating factor of the differential equation
3xy dy = 0 is x/3.	$\frac{dy}{dx} = -\frac{3xy + y^2}{x^2 + xy} \text{ is } x^{1/3}.$

Faculty of Engineering (Shoubra) Engineering Mathematics and Physics Department Mid term exam				-	Benha University Mechanical Department 1 st year Production Time allowed: 1 hour
Student Name in Arabic:	Section:	B.N.			
		Answer			
Correct the wrong statements giving the rea	son	a) <u>Wrong,</u> th	the Series $\sum_{n=1}^{\infty} U_n$ in	nust be	e divergent.
a) If $\lim_{n \to \infty} U_n \neq 0$, then Series $\sum_{n=1}^{\infty} U_n$ may be diverged	ent.	b) <u>Correct, o</u>	g. $\sum_{n=1}^{\infty} \frac{1}{n}$ is diverge	gent.	
b) The Series $\sum_{n=1}^{\infty} n^{-p}$ is divergent if $P \le 1$.		c) <u>Wrong,</u> ($J_{n} = \left(\frac{1}{2}\right)^{n} \left(1 + \frac{1}{n}\right)^{n^{2}}$	and U	$T_{n+1} = \left(\frac{1}{2}\right)^{n+1} \left(1 + \frac{1}{n+1}\right)^{(n+1)^2}$
c) The Series $\sum_{n=1}^{\infty} (-\frac{1}{2})^n (1+\frac{1}{n})^{n^2}$ is absolutely converge	ent.	$U_n > U_{n+1}$	and $\lim_{n \to \infty} (\frac{1}{2})^n (1 + \frac{1}{2})^n (1$	$(\frac{1}{n})^{n^2}$	= 0 and $U_n = (\frac{1}{2})^n (1 + \frac{1}{n})^{n^2}$
d) The differential equation $y^{+} + (y^{+})^{5} + y^{7} = 0$ of ord	ler 1 and	is divergent	, therefore $\sum_{n=1}^{\infty} \left(-\frac{1}{2}\right)$	$(1+\frac{1}{2})^n(1+$	$(\frac{1}{n})^{n^2}$ is conditionally
degree 5.		convergent			
e) The envelope of the curve $2x + (y - \alpha)^2 = 2\alpha y$ is a F	arabola.	d) D.E. y```	$(y^{)}^{5} + y^{7} = 0 \text{ of } q^{7}$	order 3	3 and degree 1.
f) An open box with volume 12 m ³ , then the maximum $12\sqrt[3]{9}$.	area equal	e) <u>Correct,</u> s	ince the envelope i	is 3y ² =	= 2x .
	2	f) <u>Correct,</u> f	(x,y,z) = 2[xy+yz+x]	xz],φ	(x,y,z) = xyz=12, and
g) The integrating factor of the differential equation (3: $dx+(x^2+xy) dy = 0$ is $\ln x$	xy+y~)	$f_x = \lambda \phi_x$,	$f_{y} = \lambda \phi_{y} \text{ and } f_{z} = \lambda$	$\phi_{z, the}$	refore, $x = y = 2z = 2\sqrt[3]{3}$,
		thus the max	ximum area = $12\sqrt[3]{9}$	9.	
		g) The integ	rating factor of the	differ	ential equation $(3xy+y^2)$

