Benha University
Faculty of Engineering- Shoubra Energy and Sustainable Energy program

Final Exam Date: 22-1 -2015
Mathematics 2 Code: EMP102 Duration : $\mathbf{3}$ hours

Answer the following questions

1) Find k such that $2 x^{2}+k x y+3 y^{2}+5 x-5 y+2=0$ represent pair of straight lines, then find angle between the two lines and bisector lines.
2) Find the equation of the circle which intersects the circles $x^{2}+y^{2}+2 x-2 y+1=0$ and $x^{2}+y^{2}+4 x-4 y+3=0$ orthogonally and whose center lies on the line $3 x-y-2=0$.
3) Find equation of parabola whose focus is (1,2) and directrix $x+3 y=7$
4) Find equation of tangent to parabola $x^{2}-8 x-8 y+8=0$ at $(8,1)$.
5) Evaluate the following integrals
a) $\int \frac{(x+4) d x}{\sqrt{x^{2}+6 x+10}}$
b) $\int \frac{d x}{\left(x^{2}+4 x+5\right)^{2}}$
c) $\int \frac{x^{2}+5}{x^{2}+3 x+2} d x$
6) Solve the differential equation $\quad y^{\prime}=x+\cos x, \quad y(0)=2, \quad y^{`}(0)=4$
7) Find area bounded by two curves $f(x)=x$ and $g(x)=x^{2}$
8) Compute the arc length of the graph of $f(x)=x^{3 / 2}$ over $[0,1]$

Model answer

The above equation represents pair of straight lines if $\left|\begin{array}{lll}\mathrm{a} & \mathrm{h} & \mathrm{g} \\ \mathrm{h} & \mathrm{b} & \mathrm{f} \\ \mathrm{g} & \mathrm{f} & \mathrm{c}\end{array}\right|=0$ and from equation (12), a
$=2, \mathrm{~h}=\mathrm{k} / 2, \mathrm{~b}=3, \quad \mathrm{~g}=5 / 2, \mathrm{f}=-5 / 2, \mathrm{c}=2$, therefore $\left|\begin{array}{ccc}2 & \mathrm{k} / 2 & 5 / 2 \\ \mathrm{k} / 2 & 3 & -5 / 2 \\ 5 / 2 & -5 / 2 & 2\end{array}\right|=0 \Rightarrow$
$2[6-25 / 4]-(\mathrm{k} / 2)[\mathrm{k}+25 / 4]+(5 / 2)[[-5 \mathrm{k} / 4-15 / 2]=0 \Rightarrow$
$11)(\mathrm{k}+7)=0 \Rightarrow \mathrm{k}=-11 / 2$ or $\quad \mathrm{k}=-7$.

At $k=-7$, the equation of the pair of st. lines is:
$2 x^{2}-7 x y+3 y^{2}+5 x-5 y+2=0 \Rightarrow\left(2 x-y+c_{1}\right)\left(x-3 y+c_{2}\right)=0$, therefore $2 x^{2}-7 x y+3 y^{2}+\left(2 c_{2}+\right.$ $\left.c_{1}\right) x-\left(3 c_{1}+c_{2}\right) y+c_{1} c_{2}=0$ and by comparing coefficients of x and y such that:

$$
2 \mathrm{c}_{2}+\mathrm{c}_{1}=5, \quad 3 \mathrm{c}_{1}+\mathrm{c}_{2}=5
$$

By solving the two equations simultaneously, we get $c_{1}=1$ and $c_{2}=2$ and therefore the two lines are $2 x-y+1=0$, and $x-3 y+2=0$.
Since $a=2, h=-7 / 2, b=3, \tan \theta=\frac{2 \sqrt{(-7 / 2)^{2}-(2)(3)}}{2+3}=1$, therefore $\theta=\tan ^{-1}(1)=\frac{\pi}{4}$.
The bisector lines are $\frac{2 x-y+1}{\sqrt{4+1}}= \pm \frac{x-3 y+2}{\sqrt{1+9}}$

At $k=-11 / 2$, the equation of the pair of st. lines is:
$4 x^{2}-11 x y+6 y^{2}+10 x-10 y+4=0 \Rightarrow\left(4 x-3 y+c_{1}\right)\left(x-2 y+c_{2}\right)=0$, therefore $4 x^{2}-11 x y+6 y^{2}+\left(4 c_{2}+\right.$ $\left.c_{1}\right) x-\left(2 c_{1}+3 c_{2}\right) y+c_{1} c_{2}=0$ and by comparing coefficients of x and y such that:

$$
4 c_{2}+c_{1}=10, \quad 2 c_{1}+3 c_{2}=10
$$

By solving the two equations simultaneously, we get $\mathrm{c}_{1}=1$ and $\mathrm{c}_{2}=2$ and therefore the two lines are $4 x-3 y+1=0$, and $x-2 y+2=0$.

Since $\mathrm{a}=2, \mathrm{~h}=-11 / 4, \mathrm{~b}=3, \tan \theta=\frac{2 \sqrt{(-11 / 4)^{2}-(2)(3)}}{2+3}=1$, therefore $\theta=\tan ^{-1}(1)=\frac{\pi}{4}$.
The bisector lines are $\frac{4 x-3 y+1}{\sqrt{16+9}}= \pm \frac{x-2 y+2}{\sqrt{1+4}}$
2) Let the equation of the required circle be $x^{2}+y^{2}+2 g x+2 f y+c=0$

Since this circle cuts the circles $x^{2}+y^{2}+2 x-2 y+1=0$ and $x^{2}+y^{2}+4 x-4 y+3=0$ orthogonally, we get $2(\mathrm{~g} .1+\mathrm{f} .(-1))=\mathrm{c}+1 \Rightarrow 2 \mathrm{~g}-2 \mathrm{f}-\mathrm{c}-1=0$

And $2(\mathrm{~g}(2)+\mathrm{f}(-2))=\mathrm{c}+3=4 \mathrm{~g}-4 \mathrm{f}-\mathrm{c}-3=0$.
As center of (i) i.e. (-g, -f) lies on $3 x-y-2=0$, we get
$-3 \mathrm{~g}+\mathrm{f}-2=0=>3 \mathrm{~g}-\mathrm{f}+2=0$...(iv)
Subtracting (ii) from (iii), so $2 \mathrm{~g}-2 \mathrm{f}-2=0=>\mathrm{g}-\mathrm{f}-1=0$
Solving (iv) and (v) simultaneously, then $\mathrm{g}=-3 / 2$ and $\mathrm{f}=-5 / 2$
From (ii), we get $\mathrm{c}=2 \mathrm{~g}-2 \mathrm{f}-1=-3+5-1=1$ and Substituting these values of g , f and c in (i), we get $x^{2}+y^{2}-3 x-5 y+1=0$, which is the equation of the required circle.
3) Let $P(x, y)$ is a point on parabola such that $\sqrt{(x-1)^{2}+(y-2)^{2}}=\frac{|x+3 y-7|}{\sqrt{1^{2}+3^{2}}}$

By squaring, we get $9 x^{2}-6 x y+y^{2}-6 x+2 y+1=0$, which is the equation of parabola.
4) By completing the square, we get $(x-4)^{2}=8(y+1)$, then $p=2$ and $h=4, k=-1, x_{1}=8$ and $\mathrm{y}_{1}=1$, thus the equation of tangent is $\left(\mathrm{x}_{1}-\mathrm{h}\right)(\mathrm{x}-\mathrm{h})=2 \mathrm{p}\left(\mathrm{y}+\mathrm{y}_{1}-2 \mathrm{k}\right) \Rightarrow 4(\mathrm{x}-4)=4(\mathrm{y}+3)$
5-a) By completing square, we get $\int \frac{(x+4) d x}{\sqrt{x^{2}+6 x+10}}=\int \frac{(x+3+1) d x}{\sqrt{(x+3)^{2}+1}}$
$=\frac{1}{2} \int \frac{2(\mathrm{x}+3) \mathrm{dx}}{\sqrt{(\mathrm{x}+3)^{2}+1}}+\int \frac{\mathrm{dx}}{\sqrt{(\mathrm{x}+3)^{2}+1}}=\sqrt{(\mathrm{x}+3)^{2}+1}+\sinh ^{-1}(\mathrm{x}+3)$
5-b) put $x+2=\tan \theta \Rightarrow d x=\sec ^{2} \theta d \theta$, therefore $\int \frac{d x}{\left(x^{2}+4 x+5\right)^{2}}=\int \frac{d x}{\left[(x+2)^{2}+1\right]^{2}}=$

$$
\begin{aligned}
\int \frac{\sec ^{2} \theta \mathrm{~d} \theta}{\left[(\tan \theta)^{2}+1\right]^{2}} & =\int \cos ^{2} \theta \mathrm{~d} \theta=\frac{1}{2} \int[1+\cos 2 \theta] \mathrm{d} \theta=\frac{\theta+\sin \theta \cos \theta}{2} \\
& =\frac{\tan ^{-1}(\mathrm{x}+2)}{2}+\frac{(\mathrm{x}+2)}{2 \sqrt{\mathrm{x}^{2}+4 \mathrm{x}+5}}
\end{aligned}
$$

5-c) The degree of numerator must be less than that of denominator, so we have to make long division

$$
x^{x^{2}+3 x+2} \begin{aligned}
& \frac{1}{\frac{x^{2}+5}{x^{2}+3 x+2}} \\
& -3 x+3
\end{aligned} \quad \frac{x^{2}+5}{x^{2}+3 x+2}=1+\frac{-3 x+3}{x^{2}+3 x+2}
$$

$\int \frac{\mathrm{x}^{2}+5}{\mathrm{X}^{2}+3 \mathrm{x}+2} \mathrm{dx}=\int\left(1+\frac{-3 \mathrm{x}+3}{\mathrm{x}^{2}+3 \mathrm{x}+2}\right) \mathrm{dx}=\int\left(1+\frac{-3 \mathrm{x}+3}{(\mathrm{x}+2)(\mathrm{x}+1)}\right) \mathrm{dx}=\mathrm{x}+\int\left(\frac{\mathrm{A}}{(\mathrm{x}+1)}+\frac{\mathrm{B}}{(\mathrm{x}+2)}\right) \mathrm{dx}$
By using partial fraction, we will get $A=6, \quad B=-9$
$\int \frac{x^{2}+5}{x^{2}+3 x+2} d x=x+\int\left(\frac{6}{(x+1)}-\frac{9}{(x+2)}\right) d x=x+6 \operatorname{Ln}(x+1)-9 \operatorname{Ln}(x+2)+c$
6- $y^{\prime}(x)=x^{2} / 2+\sin x+c$, but at $y^{\prime}=4, x=0$, therefore $c=4$, therefore $y^{\prime}(x)=x^{2} / 2+\sin x+4$, integrate, we will get $y(x)=x^{3} / 6-\cos x+4 x+d$, but at $y=2, x=0$, therefore $d=3$, thus the solution is $y(x)=x^{3} / 6-\cos x+4 x+3$
7) $A=\int_{0}^{1}\left[x-x^{2}\right] d x=\frac{x^{2}}{2}-\left.\frac{x^{3}}{6}\right|_{0} ^{1}=\frac{1}{2}-\frac{1}{6}=\frac{1}{3}$

8) $f(x)=(3 / 2) x^{1 / 2}$, therefore $L=\int_{0}^{1} \sqrt{1+\left[f^{f}(x)\right]^{2}} d x=\int_{0}^{1} \sqrt{1+\frac{9}{4}} \mathbf{x} d x$
$=\left.\frac{8}{27}\left(1+\frac{9}{4} x\right)^{3 / 2}\right|_{0} ^{1}=\left(\frac{13}{4}\right)^{3 / 2}-1$

