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Question 1 (30 marks)

a) Test the following series for convergence:
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b) Find interval of convergence of the series
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Question 2 (30 marks)

i) If s=f(u,v) = u2 + v3,  u = x2  and v = sinx, find
ds

dx

ii) Find envelope of the function (x-cos)2 + (y-sin)2 = 

iii) Expand the function f(x, y) = ln
x y( )
x y

  using Taylor series  about  (0,1)

iv) u =
3 3

1 x y
tan [ ]

2x 3y
 


, show that x ux + y uy = sin2u

v) Find all relative extrema and saddle points for  f(x, y) = -x2 - 4x - y2 + 2y - 1

Question 3 (40 marks)

Solve the following differential equations:

a) y`=
x

x
cosy- ye
e xsiny

b) y` = (y/x) + tan(y/x) c) y` = (y/2x) -  (xy)3

d) 5xy 5y y e cos2x                            e) y`` - 2y` + y = (x2 - 1) e2x + (3x+4) ex

Questions Total marks Achieved ILOS
Q1 30 b1
Q2 30 a1
Q3 40 a1, c1
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Model answer

1a-i) By ratio test, we get that
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= 7/3 > 1, therefore the series is divergent.

1a-ii) n
n

n

n

n n 1
lim [ ] [ ] 1

(3n + 2) (3n + 2) 3
lim

 
   , thus

n

n
n 1

n
(3n + 2)




 is convergent.

1a-iii) The series
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1a-iv) Since
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1-b) Since
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    x 6 3   3 < x < 9

2-i) 2ds s du s dv
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ii)



[(x-cos)2 + (y-sin)2 =  ]2(x - cos)sin  =  2(y-sin)cos tan = y/x, therefore -

xsin+ycos= 0, thus tan=y/ x, so cos=
2 2

x

x y
, sin=

2 2

y

x y
, hence envelope is

2 2 1x y     .

iii) We have to get fx, fy , fxx , fxy , fyy  such that fx =
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Therefore: at (0, 1), f (0, 1) =  0, fx = 2, fy = 0, fxx =0, fyy = 0, fxy = -2, therefore f(x,y)= f(0, 0) +
1

1!
 (

fx(0,0) (x-0) + fy(0,0)(y-0)) +
1

2!
 ( fxx(0,1)(x-0)2 + 2(x-0) (y-1) fxy(0, 1) + fyy(0, 1) (y-1)2) , therefore

f(x,y) = 2x + x (y-1)

iv) Since
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= tan u = z is homogenous of degree 2, therefore x zx  + y zy = 2 z 

dz u dz u
x y 2 tan u

du x du y

 
 

 
, hence x ux + y uy = sin2u.

v) Find the first partial derivatives fx and fy such that fx(x,y) = -2x – 4  , fy(x,y) = - 2y + 2

Determine the critical points by solving the equations fx(x,y) = 0 and fy(x,y) = 0 simultaneously, hence,

-2x – 4  = 0 , - 2y + 2 = 0, therefore the critical point is (-2,1), then determine the second order partial

derivatives such that: fxx(x,y) = -2,  fyy(x,y) = -2 ,  fxy(x,y) =0, hence  > 0, therefore it is a maximum

point.

3-a) x x(cos y - ye )dx (e xsiny)dy 0     My= Nx= -siny – ex therefore the D.E. is exact, thus

f x= cosy - y ex f(x, y) = xcosy - y ex + g(y)  f y = -x siny - ex + g`(y) = N(x,y)   g`(y) = 0,
therefore g(y) = c  f(x, y) = xcosy - y ex + c

3-b) Put y = vx   dy = vdx + xdvvdx + xdv = (v + tanv)dx cotv dv = dx/x   lnsin (y/x) = lnx

3-c) y`=(y/2x) - (xy)3 is Bernoulli D.E., thus y-3y`- y-2/2x= - x3. Put  z = y-2  z`= -2 y-3 y`
z`+ z/x =  2x3 which is linear D.E. whose solution  is zx = -2 x5/ 5+c, so xy-2 = -2 x5/ 5+c is the solution
of D.E.

3-d) The characteristic equation is 2r 5r 4 0   , therefore r=-4, -1, thus yc =  (c1 e-4x + c2 e-x)
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e cos 2x = e cos 2x
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3-e) The characteristic equation is 2r 2r 1 0   , therefore r=-1, -1, thus yc =  (c1 e-x + c2 xe-x)
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= e2x[1-2D +3D2] (x2 - 1) - ex (x3/2 + 2 x2)


