Mathematics 3A Code: EMP271 Duration : 3 hours
$\begin{array}{ll}\text { - Answer all the following questions } & \text { - No. of questions: } \mathbf{8} \\ \text { - The exam. Consists of one page } & \text { - Total marks: } \mathbf{8 0} \text { [10 marks each] }\end{array}$
1 - Let X be a random variable with gamma distribution with alpha $=2$, beta $=1 / 5$. Find the probability $\mathbf{P}(\mathbf{X}>\mathbf{3 0}), \mathbf{E}(\mathbf{X})$ and $\operatorname{Var}(\mathbf{X})$.
[Achieved ILOS: b1]
2- Each of eight randomly selected tea drinkers is given a glass containing tea S and a glass containing tea F , the probability of choosing tea S is twice the probability of choosing tea F , let X is the number of individuals prefer tea F , what is the probability that at least 3 individuals choose tea S .
[Achieved ILOS: a1]
3- Evaluate m.g.f. for the random variable of exponential and gamma distributions, then deduce expected value and variance.
[Achieved ILOS: a5, c1]
4- Find $\mathbf{E}(\mathbf{X}), \mathbf{E}(\mathbf{Y}), \operatorname{Cov}(\mathbf{X}, \mathbf{Y}), \boldsymbol{\&} \mathbf{P}(\mathbf{X}>\mathbf{Y})$ for the joint density function of two r.v's X and Y
is given by $\mathbf{f}(\mathbf{x}, \mathbf{y})=\left\{\begin{array}{lc}\mathbf{x y} / 96, & \mathbf{0}<\mathbf{x}<\mathbf{4}, \mathbf{1}<\mathbf{y}<\mathbf{5} \\ \mathbf{0} & \text { otherwise }\end{array}\right.$.
[Achieved ILOS: b2]

5- Suppose we randomly select 5 balls from a urn contains 30 red balls and 20 black balls. Let the random variable is the number of red balls, what is the probability of selecting at least 3 red balls?
[Achieved ILOS: b7]
6- $\mathrm{f}(\mathrm{x})=\mathrm{x}, 0<\mathrm{x}<1$, expand in (i)cosine harmonic (ii)odd harmonic [Achieved ILOS: $\mathbf{c 1]}$ 7- Find Fourier series for the function $f(x)=x^{2}, \quad 0<x<2$, in even sine harmonic and find $\sum_{n=1}^{\infty} \frac{1}{\mathbf{n}^{6}}$.
[Achieved ILOS: c1]

8- In a bolt factory, machines $\mathrm{A}, \mathrm{B}, \mathrm{C}$ manufacture such that machine A produce twice that of machine B which produce half that of machine $\mathrm{C}, 2 \%, 4 \%, 5 \%$ are defective bolts respectively, a bolt is drawn at random and it is a defective quality, what is the probability that it was produced by machine $\mathrm{A}, \mathrm{B}, \mathrm{C}$.
[Achieved ILOS: a1, b1]

Board of examiners:
 Dr. eng. Khaled El Naggar

$1-P(X>30)=\frac{1}{25} \int_{30}^{\infty} x e^{-x / 5} d x$, put $y=x-30$, therefore
$P(X>30)=\frac{1}{25} \int_{0}^{\infty}(y+30) e^{-(y+30) / 5} d y=\frac{e^{-6}}{25} \int_{0}^{\infty} y e^{-y / 5} d y+\frac{6 e^{-6}}{5} \int_{0}^{\infty} e^{-y / 5} d y$

Put $\mathrm{y} / 5=\mathrm{z} \Rightarrow \mathrm{dz}=\mathrm{dy} / 5$, therefore

$$
P(X>30)=e^{-6} \int_{0}^{\infty} z e^{-z} d z+6 e^{-6} \int_{0}^{\infty} e^{-z} d z=7 e^{-6}
$$

$\mathrm{E}(\mathrm{X})=\alpha / \beta=10, \operatorname{Var}(\mathrm{X})=50$
2- $P(S)=2 P(F)$, and $P(S)+P(F)=1$, therefore $P(S)=2 / 3=q, P(F)=1 / 3=p, n=8$.
By binomial distribution, we get $\mathrm{P}(\mathrm{X} \leq 5)=1-\mathrm{P}(\mathrm{X} \geq 6)=1-(\mathrm{P}(\mathrm{X}=6)+\mathrm{P}(\mathrm{X}=7)+\mathrm{P}(\mathrm{X}=8))$
$=1-\sum_{\mathrm{x}=6}^{8}{ }^{8} \mathrm{c}_{\mathrm{x}}(1 / 3)^{\mathrm{x}}(2 / 3)^{8-\mathrm{x}}=1-0.01966=0.98034$

3- The moment generating function of a exponential distribution is expressed by $\mathrm{E}\left(\mathrm{e}^{\mathrm{tx}}\right)=\int_{0}^{\infty} \mathrm{e}^{\mathrm{tx}}\left(\lambda \mathrm{e}^{-\lambda \mathrm{x}}\right) \mathrm{dx}=\int_{0}^{\infty} \lambda \mathrm{e}^{-(\lambda-\mathrm{t}) \mathrm{x}} \mathrm{dx}=\frac{\lambda}{(\lambda-\mathrm{t})}, \mu_{0}^{\prime}=1, \mu_{1}^{\prime}=\mathrm{E}(\mathrm{X})=\frac{1}{\lambda}, \mu^{\prime}{ }_{2}=\mathrm{E}\left(\mathrm{X}^{2}\right)=\frac{2}{\lambda^{2}}$

The moment generating function of gamma distribution can be expressed by

$$
E\left(e^{t x}\right)=\int_{0}^{\infty} e^{t x}\left(\frac{\beta^{\alpha}}{\Gamma \alpha} x^{\alpha-1} e^{-\beta x}\right) d x=\frac{\beta^{\alpha}}{\Gamma \alpha} \int_{0}^{\infty} x^{\alpha-1} e^{-(\beta-t) x} d x
$$

$\operatorname{Put}(\beta-t) x=y \Rightarrow d x=\frac{d y}{\beta-t}$, thus $E\left(e^{t x}\right)=\frac{\beta^{\alpha}}{(\beta-t)^{\alpha} \Gamma \alpha} \int_{0}^{\infty} y^{\alpha-1} e^{-y} d y=\frac{\beta^{\alpha}}{(\beta-t)^{\alpha}}$

4- The marginal probabilities $f_{1}(x), f_{2}(y)$ are expressed by:
$f_{1}(x)=\int_{1}^{5} \frac{x y}{96} d y=\left.\frac{x y^{2}}{192}\right|_{1} ^{5}=\frac{x}{8}$ and $f_{2}(y)=\int_{0}^{4} \frac{x y}{96} d x=\left.\frac{x^{2} y}{192}\right|_{0} ^{4}=\frac{y}{12}$, therefore they are independent and $\mathrm{E}(\mathrm{X})=\int_{0}^{4} \frac{\mathrm{x}^{2}}{8} \mathrm{dx}=\left.\frac{\mathrm{x}^{3}}{24}\right|_{0} ^{4}=\frac{8}{3}, \mathrm{E}(\mathrm{Y})=\int_{1}^{5} \frac{\mathrm{y}^{2}}{12} \mathrm{dx}=\left.\frac{\mathrm{y}^{3}}{36}\right|_{1} ^{5}=\frac{31}{9}$, but $\mathrm{E}(\mathrm{XY})=\mathrm{E}(\mathrm{X}) \mathrm{E}(\mathrm{Y})=$ $\frac{248}{27}$ and $\mathrm{E}(2 \mathrm{X}+3 \mathrm{Y})=2 \mathrm{E}(\mathrm{X})+3 \mathrm{E}(\mathrm{Y})=\frac{16}{3}+\frac{31}{3}=\frac{47}{3}$
$5-\mathrm{N}=50, \mathrm{k}=30, \mathrm{n}=5, \mathrm{p}(\mathrm{x} \geq 3)=\sum_{\mathrm{x}=3}^{5}\left[{ }^{\mathrm{k}} \mathrm{C}_{\mathrm{x}}\right]\left[{ }^{\mathrm{N}-\mathrm{k}} \mathrm{C}_{\mathrm{n}-\mathrm{x}}\right] /\left[{ }^{\mathrm{N}} \mathrm{C}_{\mathrm{n}}\right]$
6-i) we have to extend this function to be even such that:
$\mathrm{a}_{0}=\frac{2}{1} \int_{0}^{1} \mathrm{xdx}=\left(\frac{2 \mathrm{x}^{2}}{2}\right)_{0}^{1}=1$
$a_{n}=\frac{2}{1} \int_{0}^{1} x \cos \left(\frac{n \pi x}{1}\right) d x=2\left[x \frac{\sin (n \pi x)}{n \pi}+\frac{\cos (n \pi x)}{n^{2} \pi^{2}}\right]_{0}^{1}=2\left[\frac{\cos (n \pi)-1}{n^{2} \pi^{2}}\right]$
Therefore $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{T}\right)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{-4}{n^{2} \pi^{2}} \cos (2 n \pi x)$,
ii) Thus $f(x)=\sum_{n=1}^{\infty} a_{2 n-1} \cos (2 n-1) x+\sum_{n=1}^{\infty} b_{2 n-1} \sin (2 n-1) x$
$\mathrm{a}_{2 \mathrm{n}-1}=\frac{2}{1} \int_{0}^{1} x \cos (2 n-1) \pi x d x$
$=\frac{2}{1}\left(x\left(\frac{\sin (2 n-1) \pi x}{(2 n-1) \pi}\right)-\left(\frac{-\cos (2 n-1) \pi x}{(2 n-1)^{2} \pi^{2}}\right)\right)_{0}^{1}=\frac{-4}{(2 n-1)^{2} \pi^{2}}$

$$
\begin{aligned}
\mathrm{b}_{2 \mathrm{n}-1} & =\frac{2}{1} \int_{0}^{1} x \sin (2 n-1) \pi x d x \\
& =\frac{2}{1}\left(x\left(\frac{-\cos (2 n-1) \pi x}{(2 n-1) \pi}\right)-\left(\frac{-\sin (2 n-1) \pi x}{(2 n-1)^{2} \pi^{2}}\right)\right)_{0}^{1} \\
& =\frac{2}{\pi(2 n-1)}
\end{aligned}
$$

$$
\text { Therefore } f(x)=\sum_{n=1}^{\infty} b_{2 n-1} \sin (2 n-1) x=-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos n \pi}{(2 n-1)^{2}} \sin (2 n-1) x
$$

$$
\text { 7- } f(x)=\sum_{n=1}^{\infty} b_{2 n} \sin \left(\frac{2 n \pi x}{T}\right), \text { where } a_{0}=a_{2 n}=0, \text { and }
$$

$$
\mathrm{b}_{2 \mathrm{n}}=\frac{4}{\mathrm{~T}} \int_{0}^{\mathrm{T} / 2} \mathrm{f}(\mathrm{x}) \sin \left(\frac{2 \mathrm{n} \pi \mathrm{x}}{\mathrm{~T}}\right) \mathrm{dx}=\frac{4}{4} \int_{0}^{2} \mathrm{x}^{2} \sin \left(\frac{\mathrm{n} \pi \mathrm{x}}{2}\right) \mathrm{dx}
$$

$$
=\left(x^{2}\left(-\frac{2 \cos \left(\frac{n \pi x}{2}\right)}{n \pi}\right)-2 x\left(-\frac{4 \sin \left(\frac{n \pi x}{2}\right)}{n^{2} \pi^{2}}\right)+2\left(\frac{8 \cos \left(\frac{n \pi x}{2}\right)}{n^{3} \pi^{3}}\right)\right)_{0}^{2}
$$

$$
=\frac{-8}{\mathrm{n} \pi} \cos \mathrm{n} \pi+\frac{16(\cos (\mathrm{n} \pi)-1)}{\mathrm{n}^{3} \pi^{3}}
$$

8 - Let the defective event is D and the probability of machines $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are $2 / 5,1 / 5$, 2/5respectively, also $\mathrm{P}(\mathrm{D} / \mathrm{A})=0.02, \mathrm{P}(\mathrm{D} / \mathrm{B})=0.04, \mathrm{P}(\mathrm{D} / \mathrm{C})=0.05$, therefore $\mathrm{P}(\mathrm{C} / \mathrm{D})=$ $\frac{\mathrm{P}(\mathrm{D} / \mathrm{C}) \mathrm{P}(\mathrm{C})}{\mathrm{P}(\mathrm{D})}, \mathrm{P}(\mathrm{B} / \mathrm{D})=\frac{\mathrm{P}(\mathrm{D} / \mathrm{B}) \mathrm{P}(\mathrm{B})}{\mathrm{P}(\mathrm{D})}, \mathrm{P}(\mathrm{D})=\mathrm{P}(\mathrm{D} / \mathrm{A}) \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{D} / \mathrm{B}) \mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{D} / \mathrm{C}) \mathrm{P}(\mathrm{C})$

