Model Answer

Question (1) (10 Marks)

Which of the following statement is true and which is false and correct the false?
a. Defining project scope starts in the planning phase.

False
In the concept phase
b. Client requirements for additional features may cause scope creep

True
c. Each activity could be crashed until its duration becomes zero

False,
\checkmark it reaches it's maximum time reduction or
\checkmark it causes another path to also become critical or
\checkmark it is more expensive to crash than not to crash
d. AOA is a network diagramming technique in which boxes represent activities.

False, arrows represent the activity
e. A slipped milestone means the milestone activity was actually completed on the originally planned time.
False, completed after the originally planned time

Question (2) (10 Marks)

Specify the types of the relationships in the following figures:

Question (3) (8 Marks)

Draw the AOA diagram of the following network.

Task	Precedence
A	-
B	-
C	-
D	A
E	B,D
F	E
G	F,C
H	C

Answer

Question (4) (12 Marks)

An organization is considering placing a bid on a building project. It has been determined that the 6 tasks in the following table would need to be performed to carry out the project.
a. What is the expected date to finish the project if the project starts $1 / 1 / 2016$ and the organization works 5 days/week at Egypt and there is a national holiday at $7^{\text {th }}$ of January?
b. As a project manager, advice the managers about the proper plan to achieve the minimum cost if the project regulations say if you complete the project in 8 days or less there will be no penalty, if completed in 9 days there is a penalty of $10,000 \mathrm{LE}$, if completed in 10 days there is a penalty of $15,000 \mathrm{LE}$, and if completed in 11 days there is a penalty of $20,000 \mathrm{LE}$.

Task	Immediate predecessors	Normal Time	Normal Cost	Crash Time	Crash Cost
A	-	4	10,000	4	10,000
B	A	2	5,000	1	7,000
C	A	5	5,000	4	7,000
D	A	3	30,000	1	50,000
E	D	3	5,000	2	5,000
F	B,E	2	20,000	1	26,000

Question (4) Answer
Activity-on-Anow (AOA) Diagram:

\Rightarrow possible paths:
$\left.\begin{array}{rl}A B F & =4+2+2=8 \\ A D E F & =4+3+3+2=12 \\ & =4+5=9\end{array}\right\}$ the longest is the critical path $A C=4+5=9$

1) the project will be completed in 12 days

Start: 1/112005
end: 19/1/2016
)) Activity crashing:

$$
\begin{aligned}
& \text { Total cost }=10,000+5,000+5,000 \\
&+30,000+5,000+20,000 \\
&=75,000 \mathrm{LE} \\
& \Rightarrow \text { We crash the activity with lowest slope }
\end{aligned}
$$

	Slope	max. Crash Time
A	X	0
B	2,000	1
C	2,000	1
D	10,000	2
E	gen	1
F	6,000	1

on the critical path: (ADEF)
E Gonds Crashed with No cost (jew Slope). From 3 to 2 da
\therefore Hotel Cost $=75,000+0=75,000$ ADEF still the criticd path

$$
\begin{aligned}
& \text { New paths } \\
& A B F=4+2+2=8 \\
& A D E F=4+3+2+2=11 \\
& A C=4+5=9
\end{aligned}
$$

- To Crash one more day.

7. New paths:
\therefore Crash F by 1 (From $2, t_{0} 1$)

$$
\begin{aligned}
& \text { New Pan }=4+2+1=7 \\
& A D E F=4+3+2+1=10 \\
& A C=4+5=9
\end{aligned}
$$

$$
\begin{aligned}
& \text { Crash F by } 1 \text { (from } 2,001 \text {) } \\
& \text { total } \cos t=75,000+6,000=81,000
\end{aligned}
$$

A DEF still the critical path.
Crash again ADEF
$x^{2} 10,00 \times$ (can't be crashed anymore)
New paths:
\therefore Crash D From 3 to 1
Tot Cost $=81,000+10,000=91,000$

$$
\begin{aligned}
& A B F=4+2+1=7 \\
& A D E F=4+2+2+1=9 \\
& A C=4+5=9
\end{aligned}
$$

we have now, two critided paths, that must be crashed simultaneosly.

$$
x \text { \& }
$$

Crash D From 2 to 1 \& rash C from 5 to 4

$$
\begin{aligned}
& \text { turd cost }=91,000+10,000+2,000=103,000 \\
& \text { naths } \Rightarrow A B F=7
\end{aligned}
$$

$$
\begin{aligned}
&=91,000 \\
& \text { New paths } \Rightarrow \begin{array}{l}
\text { ABE }
\end{array}=7 \\
& \text { ADEF }=8 \\
& \text { N }=8
\end{aligned}
$$

$$
\begin{aligned}
& \text { ABE }=7 \\
& \text { ADEF }=8 \\
& A C=8
\end{aligned}
$$

$$
\begin{aligned}
& \text { ABET }=8 \\
& A C=8
\end{aligned}
$$

So the best choice is to crash tu 11 day only
$A C=8$

SO | \Rightarrow drys | Cost | penalty | Total |
| :---: | :---: | :---: | :---: |
| 12 | 75,000 | 20,000 | 95,000 |
| 11 | 75,000 | 20,00 | 95,000 |
| 10 | 81,000 | 15,000 | 96,000 |
| 9 | 91,000 | 10,000 | 101,00 |
| 8 | 103,000 | 3000 | 103,00 |

