1- Suppose we randomly select 5 cards without replacement from an ordinary deck of playing cards. What is the probability of getting exactly 2 red cards (i.e., hearts or diamonds)?

2- The probability of getting tails is 60% when tossing a coin 5 times. What is the probability of getting 2 tail and 3 head?

3- Suppose that a number of inquiries arriving at a certain interactive system with arrival rate 12 inquiries per minute. Find the probability of at least 2 inquiries arriving in 3 minute interval.

4- If $f(x,y) = cx^2y$ is probability density function, 0 < y < x < 1, find marginal of x and y. Check for independence, and find p(y > 1/3, x > 1/2)..

5- A weighted die is rolled once and only spots less than 4 facing up and a fair coin is tossed number of times equal to the spot number facing up from rolling the die. Let X denotes the number of head and Y denotes the spots of the die facing up. Discuss the joint distribution

6- For Gamma distribution, find μ_r [moment about zero], then deduce μ_3 [3rd moment about mean]

7- Expand in Fourier series
$$f(x) = |\cos x|$$
, $0 < x < 2\pi$

Model answer

1- This is a hypergeometric experiment in which we know the following:

N = 52; since there are 52 cards in a deck.

k = 26; since there are 26 red cards in a deck.

n = 5; since we randomly select 5 cards from the deck.

x = 2; since 2 of the cards we select are red.

We plug these values into the hypergeometric formula as follows:

$$h(x; N, n, k) = [{}^{k}C_{x}] [{}^{N-k}C_{n-x}] / [{}^{N}C_{n}]$$

Thus h (2; 52, 5, 26) = $[{}^{26}C_2] [{}^{26}C_3] / [{}^{52}C_5]$

Thus, the probability of randomly selecting 2 red cards is 0.32513.

2- Let X: number of tail facing up, therefore $P(X = 2) = {}^{5}C_{2}(0.6)^{2}(0.4)^{3}$

3-X: The number of inquiries arriving at a certain interactive such that $\lambda = 12(3) = 36$, thus $P(X \ge 2) = 1 - P(X \le 1) = 1 - \sum_{x=0}^{1} \frac{e^{-\lambda}\lambda^{x}}{x!} = 1 - \sum_{x=0}^{1} \frac{e^{-36}36^{x}}{x!} = 1 - e^{-36} - 36e^{-36}$ 4) $\int_{0}^{1} [\int_{0}^{1} cx^{2}y dx] dy = 1 \Rightarrow c = 10$, $\mathbf{f}_{x} = \int_{0}^{x} 10x^{2}y dy = 5x^{4}$, $\mathbf{f}_{y} = \int_{y}^{1} 10x^{2}y dx = \frac{10}{3}[y - y^{4}]$ & $\mathbf{f}(x,y) \neq \mathbf{f}_{x} \mathbf{f}_{y}$

Therefore they are not independent.

1/2

2

x	1	2	3	f _x
0	1/14	1/14	1/14	3/14
1	1/14	2/14	3/14	6/14
2	0	1/14	3/14	4/14
3	0	0	1/14	1/14
f _y	2/14	4/14	8/14	1

P(y > x) = 10/14

6- The moment generating function can be expressed by

$$E(e^{tx}) = \int_{0}^{\infty} e^{tx} \left(\frac{\beta^{\alpha}}{\Gamma\alpha} x^{\alpha-1} e^{-\beta x}\right) dx = \frac{\beta^{\alpha}}{\Gamma\alpha} \int_{0}^{\infty} x^{\alpha-1} e^{-(\beta-t)x} dx$$

Put
$$(\beta - t)x = y \implies dx = \frac{dy}{\beta - t}$$
, thus

$$E(e^{tx}) = \frac{\beta^{\alpha}}{(\beta - t)^{\alpha}\Gamma\alpha} \int_{0}^{\infty} y^{\alpha - 1}e^{-y}dy = \frac{\beta^{\alpha}}{(\beta - t)^{\alpha}}$$
Using the rth derivative, we get $\frac{d^{\Gamma}}{dt^{\Gamma}}\phi(t) = \frac{\beta^{\alpha}\Gamma(r + \alpha)}{(\beta - t)^{r + \alpha}\Gamma(\alpha)}$
Therefore $\mu_{\mathbf{r}} := \frac{\Gamma(r + \alpha)}{\beta^{\Gamma}\Gamma(\alpha)}$ and $\mu_{\mathbf{3}} = \mathbf{E}(\mathbf{x} - \mu)^{\mathbf{3}} = \mu_{\mathbf{3}} - \mathbf{3}\mathbf{\mu}_{\mathbf{1}}\mu_{\mathbf{2}} + \mathbf{2}[\mathbf{\mu}_{\mathbf{1}}]^{\mathbf{3}}$, where
 $\mu_{\mathbf{3}} := \frac{\Gamma(3 + \alpha)}{\beta^{3}\Gamma(\alpha)} = \frac{(2 + \alpha)(1 + \alpha)(\alpha)}{\beta^{3}}, \ \mu_{2} := \frac{\Gamma(2 + \alpha)}{\beta^{2}\Gamma(\alpha)} = \frac{(1 + \alpha)(\alpha)}{\beta^{2}}, \ \mu_{1} := \frac{\Gamma(1 + \alpha)}{\beta\Gamma(\alpha)} = \frac{\alpha}{\beta}$
7- This function is even cosine harmonic, therefore $\mathbf{a}_{0} = \frac{4}{T} \int_{0}^{T/2} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \frac{4}{\pi} \int_{0}^{\pi/2} \cos(\mathbf{x}) d\mathbf{x} = \frac{4}{\pi} \int_{0}^{\pi/2} \cos(\mathbf{x}) \cos(2n\mathbf{x}) d\mathbf{x} = \frac{4\cos(n\pi)}{\pi(2n-1)(2n+1)},$

Therefore
$$|\cos x| = \frac{2}{\pi} + \sum_{n=1}^{\infty} \frac{4\cos(n\pi)}{\pi(2n-1)(2n+1)} \cos 2nx$$

Put
$$x = \frac{\pi}{2}$$
, thus

$$-\frac{1}{2} = \sum_{n=1}^{\infty} \frac{\cos(n\pi)}{(2n-1)(2n+1)} \cos(n\pi) \Rightarrow -\frac{1}{2} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} - \dots$$
By Parseval's theorem, $\frac{2}{T} \int_{0}^{T} [f(x)]^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} a_{2n}^2 = \frac{1}{\pi} \int_{0}^{\pi} (1 + \cos 2x) dx = 1$,

Therefore
$$1 = \frac{8}{\pi^2} + \sum_{n=1}^{\infty} \frac{16}{\pi^2 (2n-1)^2 (2n+1)^2} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2 (2n+1)^2} = [1 - \frac{8}{\pi^2}]\frac{\pi^2}{16}$$

- Intended Learning Outcomes of Course (ILOS)

a- Knowledge and Understanding

On completing this course, students will be able to:

a-1 - Recognize concepts and theories of mathematics and sciences (a1)

a- 2 - Recognize methodologies of solving engineering problems, data collection interpretation. (a6)

b- Intellectual Skills

At the end of this course, the students will be able to:

b- 1 - Select appropriate mathematical and computer-based methods for modeling and analyzing problems. (b1)

b- 2 - Select appropriate solutions for engineering problems based on analytical thinking. (b3)
b- 3 - Solve engineering problems, often on the basis of limited and possibly

contradicting information. (b8)

c- Professional Skills

On completing this course, the students are expected to be able to:

c-1 - Apply knowledge of mathematics, science, information technology, design, busine

c- 2 - Apply numerical modeling methods to engineering problems. (c7)

d- General Skills

At the end of this course, the students will be able to:

d-1- Work in stressful environment and within constraints. (d2)

Questions	Total marks	Achieved	Questions	Total marks	Achieved
		ILOS			ILOS
Q1	10	b1	Q5	10	b3
Q2	10	a1	Q6	10	c1

Q3	10	a2, c1	Q7	10	a1, b1
Q4	10	b2	Q8	10	c1

Board of examiners: Dr. eng. Khaled El Naggar