Benha University		Final term exam	Date: 28-1-2016
Faculty of Engineering- Shoubra		Mathematics 3A	Code: EMP 281
(Electrical)Engineering Department	No. of questions:	$\mathbf{8}$	Duration : 3 hours
Answer the following questions	Notal Mark: 80		

1- Suppose we randomly select 5 cards without replacement from an ordinary deck of playing cards. What is the probability of getting exactly 2 red cards (i.e., hearts or diamonds)?

2- The probability of getting tails is 60% when tossing a coin 5 times. What is the probability of getting 2 tail and 3 head?

3- Suppose that a number of inquiries arriving at a certain interactive system with arrival rate 12 inquiries per minute. Find the probability of at least 2 inquiries arriving in 3 minute interval.

4- If $f(x, y)=c x^{2} y$ is probability density function, $0<y<x<1$, find marginal of x and y. Check for independence, and find $p(y>1 / 3, x>1 / 2)$..

5- A weighted die is rolled once and only spots less than 4 facing up and a fair coin is tossed number of times equal to the spot number facing up from rolling the die. Let X denotes the number of head and Y denotes the spots of the die facing up. Discuss the joint distribution
6- For Gamma distribution, find $\mu_{r}{ }^{`}$ [moment about zero], then deduce μ_{3} [$3^{\text {rd }}$ moment about mean]
7- Expand in Fourier series $f(x)=|\cos x|, \quad 0<x<2 \pi$
8-

Expand in Fourier series the illustrated figure with $T=4$.
Dr.eng.khaled El Naggar

Model answer

1- This is a hypergeometric experiment in which we know the following:
$\mathrm{N}=52$; since there are 52 cards in a deck.
$\mathrm{k}=26$; since there are 26 red cards in a deck.
$\mathrm{n}=5$; since we randomly select 5 cards from the deck.
$x=2 ;$ since 2 of the cards we select are red.
We plug these values into the hypergeometric formula as follows:

$$
\mathrm{h}(\mathrm{x} ; \mathrm{N}, \mathrm{n}, \mathrm{k})=\left[{ }^{\mathrm{k}} \mathrm{C}_{\mathrm{x}}\right]\left[{ }^{\mathrm{N}-\mathrm{k}} \mathrm{C}_{\mathrm{n}-\mathrm{x}}\right] /\left[{ }^{\mathrm{N}} \mathrm{C}_{\mathrm{n}}\right]
$$

Thus h (2; 52, 5, 26) $=\left[{ }^{26} \mathrm{C}_{2}\right]\left[{ }^{26} \mathrm{C}_{3}\right] /\left[{ }^{52} \mathrm{C}_{5}\right]$

$$
=[325][2600] /[2,598,960]=0.32513
$$

Thus, the probability of randomly selecting 2 red cards is 0.32513 .

2- Let X : number of tail facing up, therefore $\mathrm{P}(\mathrm{X}=2)={ }^{5} \mathrm{C}_{2}(0.6)^{2}(0.4)^{3}$
3-X: The number of inquiries arriving at a certain interactive such that $\lambda=12(3)=36$, thus $P(X \geq 2)=1-P(X \leq 1)=1-\sum_{x=0}^{1} \frac{e^{-\lambda} \lambda^{x}}{x!}=1-\sum_{x=0}^{1} \frac{e^{-36} 36^{x}}{x!}=1-e^{-36}-36 e^{-36}$
4) $\int_{0}^{1}\left[\int_{y}^{1} c x^{2} y d x\right] d y=1 \Rightarrow c=10, f_{x}=\int_{0}^{x} 10 x^{2} y d y=5 x^{4}, f_{y}=\int_{y}^{1} 10 x^{2} y d x=\frac{10}{3}\left[y-y^{4}\right] \boldsymbol{\&}$ $\mathbf{f}(\mathbf{x}, \mathbf{y}) \neq \mathbf{f}_{\mathrm{x}} \mathbf{f}_{\mathrm{y}}$

Therefore they are not independent.

1/2

$$
\mathbf{p}(\mathbf{y}>\mathbf{1 / 3}, \mathbf{x}>\mathbf{1} / \mathbf{2})=\int_{1 / 3}^{1 / 2}\left[\int_{1 / 2}^{1} 10 x^{2} y d x\right] d y+\int_{1 / 3}^{1}\left[\int_{y}^{1} 10 x^{2} y d x\right] d y
$$

5-

x	y	1	2	3
f_{x}				
0	$1 / 14$	$1 / 14$	$1 / 14$	$3 / 14$
1	$1 / 14$	$2 / 14$	$3 / 14$	$6 / 14$
2	0	$1 / 14$	$3 / 14$	$4 / 14$
3	0	0	$1 / 14$	$1 / 14$
f_{y}	$2 / 14$	$4 / 14$	$8 / 14$	1

$$
P(y>x)=10 / 14
$$

6- The moment generating function can be expressed by

$$
E\left(e^{\mathrm{tx}}\right)=\int_{0}^{\infty} e^{\mathrm{tx}}\left(\frac{\beta^{\alpha}}{\Gamma \alpha} x^{\alpha-1} e^{-\beta x}\right) d x=\frac{\beta^{\alpha}}{\Gamma \alpha} \int_{0}^{\infty} x^{\alpha-1} e^{-(\beta-t) x} d x
$$

$\operatorname{Put}(\beta-t) x=y \Rightarrow d x=\frac{d y}{\beta-t}$, thus
$E\left(e^{\mathrm{tx}}\right)=\frac{\beta^{\alpha}}{(\beta-\mathrm{t})^{\alpha} \Gamma \alpha} \int_{0}^{\infty} y^{\alpha-1} e^{-\mathrm{y}} \mathrm{dy}=\frac{\beta^{\alpha}}{(\beta-\mathrm{t})^{\alpha}}$
Using the r^{th} derivative, we get $\frac{\mathrm{d}^{\mathrm{r}}}{\mathrm{dt}^{\mathrm{r}}} \phi(\mathrm{t})=\frac{\beta^{\alpha} \Gamma(\mathrm{r}+\alpha)}{(\beta-\mathrm{t})^{\mathrm{r}+\alpha} \Gamma(\alpha)}$
Therefore $\mu_{\mathrm{r}}{ }^{`}=\frac{\Gamma(\mathrm{r}+\alpha)}{\beta^{\mathrm{r}} \Gamma(\alpha)}$ and $\mu_{3}=\mathrm{E}(\mathrm{x}-\mu)^{3}=\mu_{3}{ }^{`}-3 \mu_{1} \mu_{2}{ }^{`}+2\left[\mu_{1}{ }^{`}\right]^{3}$, where

$$
\mu_{3}{ }^{`}=\frac{\Gamma(3+\alpha)}{\beta^{3} \Gamma(\alpha)}=\frac{(2+\alpha)(1+\alpha)(\alpha)}{\beta^{3}}, \mu_{2}{ }^{`}=\frac{\Gamma(2+\alpha)}{\beta^{2} \Gamma(\alpha)}=\frac{(1+\alpha)(\alpha)}{\beta^{2}}, \mu_{1}{ }^{`}=\frac{\Gamma(1+\alpha)}{\beta \Gamma(\alpha)}=\frac{\alpha}{\beta}
$$

7- This function is even cosine harmonic, therefore $a_{0}=\frac{4}{T} \int_{0}^{T / 2} f(x) d x=$
$\frac{4}{\pi} \int_{0}^{\pi / 2} \cos (x) d x=\frac{4}{\pi}$
$a_{2 n}=\frac{4}{T} \int_{0}^{T / 2} f(x) \cos \left(\frac{2 n \pi x}{T}\right) d x=\frac{4}{\pi} \int_{0}^{\pi / 2} \cos (x) \cos (2 n x) d x=\frac{4 \cos (n \pi)}{\pi(2 n-1)(2 n+1)}$,
$b_{2 n}=0$

Therefore $|\boldsymbol{\operatorname { c o s }} \mathbf{x}|=\frac{2}{\pi}+\sum_{n=1}^{\infty} \frac{4 \cos (n \pi)}{\pi(2 n-1)(2 n+1)} \cos 2 n x$

Put $\mathrm{x}=\frac{\pi}{2}$, thus
$-\frac{1}{2}=\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{(2 n-1)(2 n+1)} \cos (n \pi) \Rightarrow-\frac{1}{2}=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n+1)}=$
$\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}-\ldots$.
By Parseval's theorem, $\frac{2}{\mathrm{~T}} \int_{0}^{\mathrm{T}}[\mathrm{f}(\mathrm{x})]^{2} \mathrm{dx}=\frac{\mathrm{a}_{0}{ }^{2}}{2}+\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{2 \mathrm{n}}^{2}=\frac{1}{\pi} \int_{0}^{\pi}(1+\cos 2 \mathrm{x}) \mathrm{dx}=1$,
Therefore $1=\frac{8}{\pi^{2}}+\sum_{n=1}^{\infty} \frac{16}{\pi^{2}(2 n-1)^{2}(2 n+1)^{2}} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}(2 n+1)^{2}}=[1-$ $\left.\frac{8}{\pi^{2}}\right] \frac{\pi^{2}}{16}$

- Intended Learning Outcomes of Course (ILOS)

a- Knowledge and Understanding
On completing this course, students will be able to:
a-1-Recognize concepts and theories of mathematics and sciences (a1)
a-2-Recognize methodologies of solving engineering problems, data collection interpretation. (a6)
b- Intellectual Skills
At the end of this course, the students will be able to:
b- 1 - Select appropriate mathematical and computer-based methods for modeling and analyzing problems. (b1)
b- 2 - Select appropriate solutions for engineering problems based on analytical thinking. (b3)
b- 3 - Solve engineering problems, often on the basis of limited and possibly contradicting information. (b8)
c- Professional Skills
On completing this course, the students are expected to be able to:
c- 1 - Apply knowledge of mathematics, science, information technology, design, busin ϵ
c- 2 - Apply numerical modeling methods to engineering problems. (c7)

d- General Skills

At the end of this course, the students will be able to:
d-1- Work in stressful environment and within constraints. (d2)

Questions	Total marks	Achieved ILOS	Questions	Total marks	Achieved ILOS
Q1	$\mathbf{1 0}$	b1	Q5	$\mathbf{1 0}$	b3
Q2	$\mathbf{1 0}$	$\mathbf{a 1}$	Q6	$\mathbf{1 0}$	c1

Q3	$\mathbf{1 0}$	a2, c1	Q7	10	a1, b1
Q4	$\mathbf{1 0}$	b2	Q8	10	c1

Board of examiners: Dr. eng. Khaled El Naggar

