Benha University
Faculty of Engineering- Shoubra
Credit hour system Programs Final Examination

- Answer all the following questions
- Illustrate your answers with sketches when necessary.
- The Exam. Consists of one Page

Subject: Mathematics 1
Code: EMP 101
Date: 23/1/2016
Duration : 3 hours

- No. of Questions: 2
- Total Mark: 40 Marks

Question (1):

a) Evaluate the following limits i) $\lim _{x \rightarrow \infty}\left[\frac{x+3}{x-7}\right]^{2 x}$
ii) $\lim _{\mathrm{x} \rightarrow 0}\left[\frac{1}{\mathrm{e}^{\mathrm{x}}-1}\right]^{\tan \mathrm{x}}$
b) Find the first derivative for the following functions
i) $y=\tan \left[(\sec x)^{\cos x}\right]+\ln \left(\arcsin x^{3}\right)^{\tan x}$
ii) $y=\sqrt{1+\sqrt{1+\sqrt{x}}}+\frac{4^{\csc 3 x} \tan (\ln x)}{e^{\sin x}}$

Question (2)

a) Expand $\left(3-x^{2}\right)^{-1 / 5}$, then find the general term
b) Resolve $\frac{x^{4}+3 x^{2}+x+1}{(x+2)^{2}(x-3)}$ into partial fraction
c) Express $\cos 3 \theta$ in terms of $\cos \theta$ only using Demoivre theorem
d)Solve the system of equations $\mathrm{x}-3 \mathrm{z}=-20, \quad \mathrm{y}-\mathrm{x}+2 \mathrm{z}=17, \quad 2 \mathrm{x}+\mathrm{y}=6$ using

Gauss Jordan method.

Dr. Eng. Khaled El Naggar

Answer of question 1

a-i) $\lim _{x \rightarrow \infty}\left[\frac{x+3}{x-7}\right]^{2 x}=\lim _{x \rightarrow \infty}\left[\frac{x-7+10}{x-7}\right]^{2 x}=\lim _{x \rightarrow \infty}\left[1+\frac{10}{x-7}\right]^{2 x}$

Put $x-7=y$, therefore $\lim _{x \rightarrow \infty}\left[\frac{x+3}{x-7}\right]^{2 x}=\lim _{y \rightarrow \infty}\left[1+\frac{10}{y}\right]^{2(y+7)}=e^{20}$
ii) put $y=\left[\frac{1}{e^{x}-1}\right]^{\tan x}$, hence $\ln y=-\tan x \ln \left(e^{x}-1\right)$, thus $-\lim _{x \rightarrow 0} \tan x \ln \left(e^{x}-1\right)$ of type (0. ∞)

Therefore $-\lim _{x \rightarrow 0} \tan x \ln \left(e^{x}-1\right)=-\lim _{x \rightarrow 0} \frac{\ln \left(e^{x}-1\right)}{1 / \tan x}=\lim _{x \rightarrow 0} \frac{e^{x} /\left(e^{x}-1\right)}{\csc ^{2} x}$
$=\lim _{x \rightarrow 0} \frac{e^{x} \sin ^{2} x}{e^{x}-1}=\lim _{x \rightarrow 0} \frac{e^{x} \sin ^{2} x+2 e^{x} \sin x \cos x}{e^{x}}=0$, thus $\lim _{x \rightarrow 0}\left[\frac{1}{e^{x}-1}\right]^{\tan x}=1$
b) $y=\tan \left[(\sec x)^{\cos x}\right]+\tan x \ln \left(\arcsin x^{3}\right)$, therefore
$y^{`}=\left[\sec ^{2}\left[(\sec x)^{\cos x}\right]\right](\sec x)^{\cos x}\left[-\sin x \ln \sec x+\frac{\sec x \tan x}{\sec x} \cos x\right]+$
$\sec ^{2} x \ln \left(\arcsin x^{3}\right)+\tan x\left[\frac{3 x^{2} /\left[\sqrt{1-x^{6}}\right.}{\arcsin x^{3}}\right]$
$=\left[\sec ^{2}\left[(\sec x)^{\cos x}\right]\right](\sec x)^{\cos x}[-\sin x \ln \sec x+\sin x]+$
$\sec ^{2} x \ln \left(\arcsin x^{3}\right)+\tan x\left[\frac{3 x^{2} /\left[\sqrt{1-x^{6}}\right.}{\arcsin x^{3}}\right]$
ii) $\mathrm{y}^{`}=\frac{1}{2}\left[1+\left[1+\mathrm{x}^{1 / 2}\right]^{1 / 2}\right]^{-1 / 2}\left[\frac{1}{2}\left[1+\mathrm{x}^{1 / 2}\right]^{-1 / 2}\right]\left[\frac{1}{2} \mathrm{x}^{-1 / 2}\right]+$ $\left(\left[-3 \csc 3 x \cot 3 x 4^{\csc 3 x} \ln 4\right] \tan (\ln x)+4^{\csc 3 x} \frac{\sec ^{2} \ln x}{x}\right) e^{\sin x}-4^{\csc 3 x} \cos x e^{\sin x}$
$e^{2 \sin x}$

Answer of question 2

a) $\left(3-x^{2}\right)^{-1 / 5}=3^{-1 / 5}\left(1-\frac{x^{2}}{3}\right)^{-1 / 5}=3^{-1 / 5}\left(1-\frac{1}{5}\left(-\frac{x^{2}}{3}\right)+\frac{\frac{1}{5}\left(\frac{6}{5}\right)\left(-\frac{x^{2}}{3}\right)^{2}}{2!}-\frac{\frac{1}{5}\left(\frac{6}{5}\right)\left(\frac{7}{5}\right)\left(-\frac{x^{2}}{3}\right)^{3}}{3!}-\ldots\right.$

The general term is $\frac{(-1)^{r} \frac{1}{5}\left(\frac{6}{5}\right) \ldots .\left(\frac{1}{5}+r-1\right)\left(-\frac{x^{2}}{3}\right)^{r}}{r!}$
b) By long devision,

$$
\frac{x^{4}+3 x^{2}+x+1}{(x+2)^{2}(x-3)}=x-1+\frac{12 x^{2}+5 x-11}{(x+2)^{2}(x-3)}=x-1+\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{c}{x-3}, \text { so that }
$$

such that $A(x+2)(x-3)+B(x-3)+c(x+2)^{2}=12 x^{2}+5 x-11$
At $x=-2, B=-27 / 5$ and at $x=3, c=112 / 25$ and finally at $x=0$, therefore $-6 A-3 B+4 c=-11$, fro which we get A
c)
$\cos 3 \theta+\mathrm{i} \sin 3 \theta=(\cos \theta+\mathrm{i} \sin \theta)^{3}=(\cos \theta)^{3}+3(\cos \theta)^{2}(\mathrm{i} \sin \theta)+3(\cos \theta)(\mathrm{i} \sin \theta)^{2}+(\mathrm{i} \sin \theta)^{3}$ Thus $\cos 3 \theta=(\cos \theta)^{3}-3(\cos \theta)(\sin \theta)^{2}=(\cos \theta)^{3}-3(\cos \theta)\left(1-\cos ^{2} \theta\right)=4(\cos \theta)^{3}-3 \cos \theta$

3- Intended Learning Outcomes of Course (ILOS)

a- Knowledge and Understanding

On completing this course, students will be able to:
a. 1 - Recognize concepts and theories of Differentiation and Integration: Functions, Limits, Differentiation Indefinite integrals, Integral properties, Linear Algebra: Binomial Theorem, Matrices.(A.1)
a.2-Solving engineering problems, data collection interpretation for Differentiation and Integration (A.5)

b- Intellectual Skills

At the end of this course, the students will be able to:
b. 1 - Select appropriate mathematical methods for analyzing of Differentiation and Integration problems (B.1)
b. 2 - Select appropriate solutions for engineering problems based on Differentiation and Integration concepts and theories, Matrix properties(B.2)
b. 3 - Solve engineering problems, often on the basis of Differentiation and Integration, Linear Equations and Matrices(B.7)

c- Professional Skills

On completing this course, the students are expected to be able to:
c. 1 - Apply knowledge of mathematics,Differentiation and Integration, Linear EquationsMatrices (C.1)
c. 2 - Apply numerical modeling methods and/or appropriate computational techniques to Differentiation and Integration engineering problems (C.7)

d- General Skills

At the end of this course, the students will be able to:
d.1-Communicate effectively (D.3)
d.2-Engage in self-learning and improving performance (D.7)

Questions	Total marks	Achieved ILOS
Q1	20	b1,a2,c1
Q2	$\mathbf{2 0}$	$\mathbf{a 1 , b 1 , b 2}$

