Benha University	Ordinary and partial differential equations	
Faculty of Engineering (Shoubra)	Code: EMM 401 January 2016	
Engineering Mathematics and		
Physics Department		Time allowed: 3 hours
Scores $: 200$ marks		

1-i) Discuss two different numerical methods for solving the following system of ordinary differential equation $y^{\prime `}=f(t, y ~ `, ~ y, ~ x), ~ x^{`}=g\left(t, x^{`}, y, x\right)$ given $y\left(t_{0}\right)=a, ~ y^{`}\left(t_{0}\right)=b$ and $\mathrm{x}\left(\mathrm{t}_{0}\right)=\mathrm{c}, \mathrm{x}^{\prime}\left(\mathrm{t}_{0}\right)=\mathrm{d}$.

1-ii) Use modified Euler method to find $y\left(t_{2}\right)$ with a given h.

1-iii) Apply the above methods in solving the following differential equation

$$
x^{`}-3 y^{`}=-2 t+x-2 y-7,2 x^{`}+y^{`}=10 t+y+3-t^{2}, x(1)=2, y(1)=3
$$

2-i) Discuss the solution $U(x, y)$ of the following P.D.E. analytically:
$a-U_{t t}=c^{2} U_{x x}, 0<x<L$, with B.C. $U(0, t)=U(L, t)=0$ and I.C. $: U(x, 0)=f(x), U_{t}(x, 0)=g(x)$ $\mathrm{b}-\mathrm{U}_{\mathrm{t}}=\mathrm{c} \mathrm{U}_{\mathrm{xx}}, 0<\mathrm{x}<\mathrm{L}$, with B.C.: $\mathrm{U}(0, \mathrm{t})=\mathrm{U}(\mathrm{L}, \mathrm{t})=0$ and I.C. $: \mathrm{U}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x})$.

2-ii) Represent above P.D.E in square mesh using finite difference method taking $\mathrm{h}=\mathrm{k}$.

2-iii) If $L=1, f(x)=x(x-1), g(x)=0, c=1$, solve the above differential equations numerically \& analytically.

Modified Euler method: $y_{i+1}=y_{i}+(h / 2)\left[f\left(x_{i}, y_{i}\right)+f\left(x_{i+1}, y_{i}+h f\left(x_{i}, y_{i}\right)\right)\right]$

Good luck

Model answer

Answer of question 1

1-i) Using Taylor

Let $\mathrm{y}^{`}=\mathrm{z}, \mathrm{z}^{`}=\mathrm{f}(\mathrm{t}, \mathrm{z}, \mathrm{y}, \mathrm{x})$ and let $\mathrm{x}^{`}=\mathrm{w}, \mathrm{w}^{`}=\mathrm{g}(\mathrm{t}, \mathrm{w}, \mathrm{y}, \mathrm{x})$, thus $\mathrm{y}^{`}{ }^{\prime}=\mathrm{z}^{`}=\mathrm{f}(\mathrm{t}, \mathrm{z}, \mathrm{y}, \mathrm{x})$ and $y^{\prime}{ }^{\prime}=z^{\prime}=h\left(t, z, y, x, z^{`}, y^{`}, x^{`}\right)$. Also $x^{`}=w^{`}=g(t, w, y, x) \& x^{`}{ }^{\prime}=w^{`}=s\left(t, w, y, x, w^{`}, y^{`}\right.$, $\mathrm{x}^{`}$).
$y(t)=y_{0}+\frac{t-t_{0}}{1!} y_{0}^{(1)}+\frac{\left(t-t_{0}\right)^{2}}{2!} y_{0}^{(2)}+\frac{\left(t-t_{0}\right)^{3}}{3!} y_{0}^{(3)}+\cdots$,
$\mathrm{z}(\mathrm{t})=\mathrm{z}_{0}+\frac{\mathrm{t}-\mathrm{t}_{0}}{1!} \mathrm{z}_{0}^{(1)}+\frac{\left(\mathrm{t}-\mathrm{t}_{0}\right)^{2}}{2!} \mathrm{z}_{0}^{(2)}+\frac{\left(\mathrm{t}-\mathrm{t}_{0}\right)^{3}}{3!} \mathrm{z}_{0}^{(3)}+\cdots$,
$x(t)=x_{0}+\frac{t-t_{0}}{1!} x_{0}^{(1)}+\frac{\left(t-t_{0}\right)^{2}}{2!} x_{0}^{(2)}+\frac{\left(t-t_{0}\right)^{3}}{3!} x_{0}^{(3)}+\cdots$,
$\mathrm{w}(\mathrm{t})=\mathrm{w}_{0}+\frac{\mathrm{t}-\mathrm{t}_{0}}{1!} \mathrm{w}_{0}^{(1)}+\frac{\left(\mathrm{t}-\mathrm{t}_{0}\right)^{2}}{2!} \mathrm{w}_{0}^{(2)}+\frac{\left(\mathrm{t}-\mathrm{t}_{0}\right)^{3}}{3!} \mathrm{w}_{0}^{(3)}+\cdots$,
$\mathrm{x}_{0}=\mathrm{c}, \mathrm{y}_{0}=\mathrm{a}, \mathrm{z}_{0}=\mathrm{b}, \mathrm{w}_{0}=\mathrm{d}, \mathrm{y}_{0}^{(1)}=\mathrm{z}_{0}=\mathrm{b}, \mathrm{y}_{0}^{(2)}=\mathrm{z}_{0}^{(1)}=\mathrm{f}\left(\mathrm{t}_{0}, \mathrm{~b}, \mathrm{a}, \mathrm{c}\right)=\mathrm{f}_{0}, \mathrm{y}_{0}^{(3)}=\mathrm{z}_{0}^{(2)}=\mathrm{h}\left(\mathrm{t}_{0}, \mathrm{~b}, \mathrm{a}\right.$,
$\left.\mathrm{c}, \mathrm{f}_{0}, \mathrm{~d}\right) \mathrm{X}_{0}^{(1)}=\mathrm{w}_{0}=\mathrm{d}, \mathrm{x}_{0}^{(2)}=\mathrm{w}_{0}^{(1)}=\mathrm{g}\left(\mathrm{t}_{0}, \mathrm{~d}, \mathrm{a}, \mathrm{c}\right)=\mathrm{g}_{0}, \mathrm{x}_{0}^{(3)}=\mathrm{w}_{0}^{(2)}=\mathrm{s}\left(\mathrm{t}_{0}, \mathrm{~d}, \mathrm{a}, \mathrm{c}, \mathrm{g}_{0}, \mathrm{~b}\right)$

Since $f(t, z, y, x)$ and $g(t, w, y, x)$ are given functions and t_{0}, a, b, c, d are given constants, hence we can get $y(t)$ and $x(t)$

Using Picard

$\mathrm{y}_{\mathrm{n}+1}=\mathrm{y}_{0}+\int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{z}_{\mathrm{n}} \mathrm{dt}$, therefore $\mathrm{y}_{1}=\mathrm{y}_{0}+\int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{z}_{0} \mathrm{dt}=\mathrm{a}+\int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{bdt}=\mathrm{a}+\mathrm{b}\left(\mathrm{t}-\mathrm{t}_{0}\right)$ and $\mathrm{y}_{2}=\mathrm{y}_{0}+\int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{z}_{1} \mathrm{dt}$, where
$z_{n+1}=z_{0}+\int_{t_{0}}^{t} f\left(t, z_{n}, y_{n}, x_{n}\right) d t$, hence $z_{1}=z_{0}+\int_{t_{0}}^{t} f\left(t, z_{0}, y_{0}, x_{0}\right) d t=b+\int_{t_{0}}^{t} f(t, b, a, c) d t$.

Therefore $y_{2}=y_{0}+\int_{\mathfrak{t}_{0}}^{t}\left[b+\int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{f}(\mathrm{t}, \mathrm{b}, \mathrm{a}, \mathrm{c}) \mathrm{dt}\right] \mathrm{dt}$.
$\mathrm{x}_{\mathrm{n}+1}=\mathrm{x}_{0}+\int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{w}_{\mathrm{n}} \mathrm{dt}$, therefore $\mathrm{x}_{1}=\mathrm{x}_{0}+\int_{\mathfrak{t}_{0}}^{\mathrm{t}} \mathrm{w}_{0} \mathrm{dt}=\mathrm{c}+\int_{\mathfrak{t}_{0}}^{\mathrm{t}} \mathrm{ddt}=\mathrm{c}+\mathrm{d}\left(\mathrm{t}-\mathrm{t}_{0}\right)$ and $\mathrm{x}_{2}=\mathrm{x}_{0}+\int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{w}_{1} \mathrm{dt}$,
where
$w_{n+1}=w_{0}+\int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{g}\left(\mathrm{t}, \mathrm{w}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right) \mathrm{dt}$, hence $\mathrm{w}_{1}=\mathrm{w}_{0}+\int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{g}\left(\mathrm{t}, \mathrm{w}_{0}, \mathrm{y}_{0}, \mathrm{x}_{0}\right) \mathrm{dt}=\mathrm{d}+$
$\int_{t_{0}}^{t} g(t, d, a, c) d t$.

Therefore $\mathrm{x}_{2}=\mathrm{x}_{0}+\int_{\mathrm{t}_{0}}^{\mathrm{t}}\left[\mathrm{d}+\int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{f}(\mathrm{t}, \mathrm{d}, \mathrm{a}, \mathrm{c}) \mathrm{dt}\right] \mathrm{dt}$.

1-ii) Use Modified Euler method:

$y_{i+1}=y_{i}+(h / 2)\left[2 z_{i}+h f\left(t_{i}, z_{i}, y_{i}, x_{i}\right)\right]$, therefore $y_{1}=y_{0}+(h / 2)\left[2 z_{0}+h f\left(t_{0}, z_{0}, y_{0}, x_{0}\right)\right] \Rightarrow$
$y_{1}=a+(h / 2)\left[2 b+h f\left(t_{0}, b, a, c\right)\right]$ and $y_{2}=y_{1}+(h / 2)\left[2 z_{1}+h f\left(t_{1}, z_{1}, y_{1}, x_{1}\right)\right]$, where
$\left.\mathrm{x}_{1}=\mathrm{x}_{0}+\mathrm{h} / 2\right)\left[2 \mathrm{w}_{0}+\mathrm{hg}\left(\mathrm{t}_{0}, \mathrm{w}_{0}, \mathrm{y}_{0}, \mathrm{x}_{0}\right)\right] \Rightarrow \mathrm{x}_{1}=\mathrm{x}_{0}+(\mathrm{h} / 2)\left[2 \mathrm{~d}+\mathrm{hg}\left(\mathrm{t}_{0}, \mathrm{~d}, \mathrm{a}, \mathrm{c}\right)\right]$

1 -iii) $x^{`}=x^{2}-2 t x+y-2 t=f(x, y, t), y=y-x^{2}-2 t x+2 t+3=\varphi(x, y, t), x_{0}=2, y_{0}=3, t_{0}=1$
$y_{i+1}=y_{i}+(h / 2)\left[\varphi\left(\mathrm{t}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)+\varphi\left(\mathrm{t}_{\mathrm{i}+1}, \mathrm{x}_{\mathrm{i}}+\mathrm{hf}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \mathrm{y}_{\mathrm{i}}+\mathrm{h} \varphi\left(\mathrm{t}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)\right)\right]$
Put $\mathrm{i}=0$, therefore
$\mathrm{y}_{1}=\mathrm{y}_{0}+(\mathrm{h} / 2)\left[\varphi\left(\mathrm{t}_{0}, \mathrm{x}_{0}, \mathrm{y}_{0}\right)+\varphi\left(\mathrm{t}_{1}, \mathrm{x}_{0}+\mathrm{hf}\left(\mathrm{t}_{0}, \mathrm{x}_{0}, \mathrm{y}_{0}\right), \mathrm{y}_{0}+\mathrm{h} \varphi\left(\mathrm{t}_{0}, \mathrm{x}_{0}, \mathrm{y}_{0}\right)\right)\right]=2.9585$
By picard
$y_{n+1}=y_{0}+\int_{t_{0}}^{t}\left(x_{n} z_{n}+28 x_{n}-y_{n}\right) d t, \quad x_{n+1}=x_{0}+\int_{t_{0}}^{t}-10\left(x_{n}-y_{n}\right) d t, \quad z_{n+1}=z_{0}+\int_{t_{0}}^{t}\left(x_{n} y_{n}-8 z_{n} / 3\right) d t$,
$y_{0}=-1, x_{0}=2, t_{0}=0, z_{0}=3$, thus $x_{1}=x_{0}+\int_{\mathfrak{t}_{0}}^{t}-10\left(x_{0}-y_{0}\right) d t, y_{1}=y_{0}+\int_{t_{0}}^{t}\left(x_{0} z_{0}+28 x_{0}-y_{0}\right) d t$ and $\mathrm{z}_{1}=\mathrm{z}_{0}+\int_{\mathrm{t}_{0}}^{\mathrm{t}}\left(\mathrm{x}_{0} \mathrm{y}_{0}-8 \mathrm{z}_{0} / 3\right) \mathrm{dt}$, therefore $\mathrm{x}_{1}=2-30 \mathrm{t}, \quad \mathrm{y}_{1}=-1+51 \mathrm{t}, \mathrm{z}_{1}=3-10 \mathrm{t}$. Similarly, $\mathrm{x}_{2}=\mathrm{x}_{0}+\int_{\mathfrak{t}_{0}}^{\mathrm{t}}-10\left(\mathrm{x}_{1}-\mathrm{y}_{1}\right) \mathrm{dt}, \quad \mathrm{y}_{2}=\mathrm{y}_{0}+\int_{\mathfrak{t}_{0}}^{\mathrm{t}}\left(\mathrm{x}_{1} \mathrm{z}_{1}+28 \mathrm{x}_{1}-\mathrm{y}_{1}\right) \mathrm{dt}$ and $\mathrm{z}_{2}=\mathrm{z}_{0}+\int_{\mathfrak{t}_{0}}^{\mathrm{t}}\left(\mathrm{x}_{1} \mathrm{y}_{1}-8 \mathrm{z}_{1} / 3\right) \mathrm{dt}$, therefore $\mathrm{x}_{2}=2-30 \mathrm{t}+405 \mathrm{t}^{2}, \mathrm{y}_{2}=-1+51 \mathrm{t}-(781 / 2) \mathrm{t}^{2}-100 \mathrm{t}^{3}, \mathrm{z}_{2}=3-10 \mathrm{t}+(238 / 3) \mathrm{t}^{2}-510 \mathrm{t}^{3}$.
$2^{\text {nd }}$: using Euler, $x_{n+1}=x_{n}+h\left[-10\left(x_{n}-y_{n}\right)\right], y_{n+1}=y_{n}+h\left[-x_{n} z_{n}+28 x_{n}-y_{n}\right]$, thus $x_{1}=x_{0}+h[-$ $\left.10\left(\mathrm{x}_{0}-\mathrm{y}_{0}\right)\right]=0.5=\mathrm{x}(0.05), \mathrm{y}_{1}=\mathrm{y}_{0}+\mathrm{h}\left[-\mathrm{x}_{0} \mathrm{z}_{0}+28 \mathrm{x}_{0}-\mathrm{y}_{0}\right]=1.55=\mathrm{y}(0.05)$, therefore $\mathrm{x}(0.1)=$ $\mathrm{x}_{2}=\mathrm{x}_{1}+\mathrm{h}\left[-10\left(\mathrm{x}_{1}-\mathrm{y}_{1}\right)\right]=1.025$

Answer of question 2

2-i)
a) We use Separation method to solve the Wave equation, so that the solution is expressed as $\mathrm{U}(\mathrm{x}, \mathrm{t})=\phi(\mathrm{x}) \Psi(\mathrm{t})$, therefore $\mathrm{U}_{\mathrm{xx}}=\phi^{\prime \prime}(\mathrm{x}) \Psi(\mathrm{t})$ and $\mathrm{U}_{\mathrm{tt}}=\phi(\mathrm{x}) \Psi^{\prime \prime}(\mathrm{t})$, thus $\mathrm{c}^{2} \phi^{\prime \prime}(\mathrm{x}) \Psi(\mathrm{t})=$ $\phi(\mathrm{x}) \Psi^{\prime \prime}(\mathrm{t})$.

Therefore $\frac{\phi^{\prime \prime}(\mathrm{x})}{\phi(\mathrm{x})}=\frac{1}{\mathrm{c}^{2}} \frac{\psi^{\prime \prime}(\mathrm{x})}{\psi(\mathrm{x})}=-\lambda$, where λ is positive constant.
Thus $\phi^{\prime \prime}(\mathrm{x})+\lambda \phi(\mathrm{x})=0$, the characteristic equation is $\mathrm{m}^{2}+\lambda=0$, so $\phi(x)=c_{1} \cos \sqrt{\lambda} x+c_{2} \sin \sqrt{\lambda} x$.

And $\Psi^{\prime \prime}(\mathrm{t})+\mathrm{c}^{2} \lambda \Psi(\mathrm{t})=0$, the characteristic equation is $\mathrm{n}^{2}+\mathrm{c}^{2} \lambda=0$, so $\Psi(\mathrm{t})=\mathrm{c}_{3} \cos \mathrm{c} \sqrt{\lambda} \mathrm{t}+\mathrm{c}_{4} \sin \mathrm{c} \sqrt{\lambda} \mathrm{t}$.

Therefore $U(x, t)=\left(c_{1} \cos \sqrt{\lambda} x+c_{2} \sin \sqrt{\lambda} x\right)\left(c_{3} \cos c \sqrt{\lambda} t+c_{4} \sin c \sqrt{\lambda} t\right)$.

But $U(0, t)=0$, therefore $c_{1}\left(c_{3} \cos c \sqrt{\lambda} t+c_{4} \sin c \sqrt{\lambda} t\right)=0$, thus $c_{1}=0$, hence $U(x, t)=\left(c_{2} \sin \sqrt{\lambda} x\right)\left(c_{3} \cos c \sqrt{\lambda} t+c_{4} \sin c \sqrt{\lambda} t\right)$.

Since $U(L, t)=0$, therefore $\left(c_{2} \sin \sqrt{\lambda} L\right)\left(c_{3} \cos c \sqrt{\lambda} t+c_{4} \sin c \sqrt{\lambda} t\right)=0$, but $c_{2} \neq 0$, thus $\sin \sqrt{\lambda} \mathrm{L}=0$, hence $\sqrt{\lambda} \mathrm{L}=\mathrm{n} \pi \Rightarrow \lambda=\left(\frac{\mathrm{n} \pi}{\mathrm{L}}\right)^{2}, \mathrm{n}=1,2,3, \ldots$ Therefore $\phi(\mathrm{x})=\left(\mathrm{c}_{2} \sin \right.$ $\left.\left(\frac{\mathrm{n} \pi}{\mathrm{L}}\right) \mathrm{x}\right)$, thus $\mathrm{U}(\mathrm{x}, \mathrm{t})=\sum_{\mathrm{n}=1}^{\infty} \sin \left(\frac{\mathrm{n} \pi}{\mathrm{L}}\right) \mathrm{x}\left[\mathrm{A}_{\mathrm{n}} \cos \left(\frac{\mathrm{cn} \pi}{\mathrm{L}}\right) \mathrm{t}+\mathrm{B}_{\mathrm{n}} \sin \left(\frac{\mathrm{cn} \pi}{\mathrm{L}}\right) \mathrm{t}\right]$

But $U(x, 0)=f(x)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{L}\right) x$, which is Fourier sine series such that

$$
A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L}\right) x d x
$$

Since $U_{t}(x, t)=\sum_{n=1}^{\infty}\left(\frac{\mathrm{cn} \pi}{\mathrm{L}}\right) \sin \left(\frac{\mathrm{n} \pi}{\mathrm{L}}\right) \mathrm{x}\left[-\mathrm{A}_{\mathrm{n}} \sin \left(\frac{\mathrm{cn} \pi}{\mathrm{L}}\right) \mathrm{t}+\mathrm{B}_{\mathrm{n}} \cos \left(\frac{\mathrm{cn} \pi}{\mathrm{L}}\right) \mathrm{t}\right]$
And $U_{t}(x, 0)=g(x)$, therefore $\sum_{n=1}^{\infty} B_{n}\left(\frac{c n \pi}{L}\right) \sin \left(\frac{n \pi}{L}\right) x=g(x)$, which is Fourier sine series such
that $B_{n}\left(\frac{\mathrm{cn} \pi}{\mathrm{L}}\right)=\frac{2}{\mathrm{~L}} \int_{0}^{\mathrm{L}} \mathrm{g}(\mathrm{x}) \sin \left(\frac{\mathrm{n} \pi}{\mathrm{L}}\right) \mathrm{xdx}$, therefore

$$
\mathrm{B}_{\mathrm{n}}=\frac{2}{\operatorname{cn} \pi} \int_{0}^{\mathrm{L}} \mathrm{~g}(\mathrm{x}) \sin \left(\frac{\mathrm{n} \pi}{\mathrm{~L}}\right) \mathrm{x} d \mathrm{dx}
$$

b) We use Separation method to solve the Heat equation, so that the solution is expressed as $\mathrm{U}(\mathrm{x}, \mathrm{t})=\phi(\mathrm{x}) \Psi(\mathrm{t})$, therefore $\mathrm{U}_{\mathrm{xx}}=\phi^{\prime \prime}(\mathrm{x}) \Psi(\mathrm{t})$ and $\mathrm{U}_{\mathrm{t}}=\phi(\mathrm{x}) \Psi^{\prime}(\mathrm{t})$, thus $\mathrm{c} \phi^{\prime \prime}(\mathrm{x}) \Psi(\mathrm{t})=$ $\phi(\mathrm{x}) \Psi^{\prime}(\mathrm{t})$.

Therefore $\frac{\phi^{\prime \prime}(\mathrm{x})}{\phi(\mathrm{x})}=\frac{1}{\mathrm{c}} \frac{\psi^{\prime}(\mathrm{x})}{\psi(\mathrm{x})}=-\lambda$, where λ is positive constant.
Thus $\phi^{\prime \prime}(\mathrm{x})+\lambda \phi(\mathrm{x})=0$, the characteristic equation is $\mathrm{m}^{2}+\lambda=0$, so
$\phi(\mathrm{x})=\mathrm{c}_{1} \cos \sqrt{\lambda} \mathrm{x}+\mathrm{c}_{2} \sin \sqrt{\lambda} \mathrm{x}$ and $\Psi^{\prime}(\mathrm{t})+\mathrm{c} \lambda \Psi(\mathrm{t})=0$, the characteristic equation is $\mathrm{n}+$ $\mathrm{c} \lambda=0$, so $\Psi(\mathrm{t})=\mathrm{c}_{3} \mathrm{e}^{-\mathrm{c} \lambda \mathrm{t}}$

Therefore $U(x, t)=\left(c_{1} \cos \sqrt{\lambda} x+c_{2} \sin \sqrt{\lambda} x\right)\left(c_{3} e^{-c \lambda t}\right)$.

But $U(0, t)=0$, therefore $U(0, t)=\left(c_{1}\right)\left(c_{3} e^{-c \lambda t}\right)=0$, thus $c_{1}=0$, hence $U(x, t)=\left(c_{2} \sin \sqrt{\lambda} x\right)\left(c_{3}\right.$ $\left.e^{-c \lambda t}\right)$, and $U(L, t)=0$, therefore: $\left(c_{2} \sin \sqrt{\lambda} L\right)\left(c_{3} e^{-c \lambda t}\right)=0$ and $c_{2} \neq 0$, thus $\sin \sqrt{\lambda} L=0$, hence $\sqrt{\lambda} \mathrm{L}=\mathrm{n} \pi \Rightarrow \lambda=\left(\frac{\mathrm{n} \pi}{\mathrm{L}}\right)^{2}, \mathrm{n}=1,2,3, \ldots$ Therefore $\phi(\mathrm{x})=\left(\mathrm{c}_{2} \sin \left(\frac{\mathrm{n} \pi}{\mathrm{L}}\right) \mathrm{x}\right)$, thus $U(x, t)=\sum_{n=1}^{\infty} A_{n} e^{\left(-\frac{c n \pi}{L}\right) t} \sin \left(\frac{n \pi}{L}\right) x$, but $U(x, 0)=f(x)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{L}\right) x$, which is Fourier sine series such that $A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L}\right) x d x$

2-ii) To solve the above equation numerically, we use graphical representation of partial equations such that: $u_{x}=\frac{u_{i+1, j}-u_{i, j}}{h}=\frac{u_{i, j}-u_{i-1, j}}{h}, \quad u_{y}=\frac{u_{i, j+1}-u_{i, j}}{k}=\frac{u_{i, j}-u_{i, j-1}}{k}$, $u_{x x}=\frac{u_{i+1, j}-2 u_{i, j}+u_{i-1, j}}{h^{2}}, \quad u_{y y}=\frac{u_{i, j+1}-2 u_{i, j}+u_{i, j-1}}{k^{2}}, \quad u_{x y}=\frac{u_{i+1, j+1}-u_{i-1, j+1}-u_{i+1, j-1}+u_{i-1, j-1}}{4 h k}$, but $U_{t t}=c^{2} U_{x x}$, therefore $\frac{u_{i, j+1}-2 u_{i, j}+u_{i, j-1}}{k^{2}}=c^{2} \frac{u_{i+1, j}-2 u_{i, j}+u_{i-1, j}}{h^{2}}$ and for $U_{t}=c U_{x x}$, therefore $\frac{u_{i, j+1}-u_{i, j}}{k}=c \frac{u_{i+1, j}-2 u_{i, j}+u_{i-1, j}}{h^{2}}$

But $h=k$, therefore $u_{i, j+1}-2 u_{i, j}+u_{i, j-1}=c^{2}\left[u_{i+1, j}-2 u_{i, j}+u_{i-1, j}\right] \Rightarrow$ $u_{i, j+1}=2\left(1-c^{2}\right) u_{i, j}+c^{2}\left[u_{i+1, j}+u_{i-1, j}\right]-u_{i, j-1}$ and for $U_{t}=c U_{x x}$, the formula is $h\left[u_{i, j+1}-u_{i, j}\right]=c\left[u_{i+1, j}-2 u_{i, j}+u_{i-1, j}\right]$

2-iii-a $U(x, t)=\sum_{n=1}^{\infty} \sin \left(\frac{n \pi}{L}\right) x\left[A_{n} \cos \left(\frac{\mathrm{cn} \pi}{\mathrm{L}}\right) \mathrm{t}+\mathrm{B}_{\mathrm{n}} \sin \left(\frac{\mathrm{cn} \pi}{\mathrm{L}}\right) \mathrm{t}\right]$

$$
A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L}\right) x d x, B_{n}=\frac{2}{\operatorname{cn} \pi} \int_{0}^{L} g(x) \sin \left(\frac{n \pi}{L}\right) x d x
$$

2-iii-b) $U(x, t)=\sum_{n=1}^{\infty} A_{n} e^{\left(-\frac{\mathrm{cn} \pi}{L}\right) t} \sin \left(\frac{n \pi}{L}\right) x, A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L}\right) x d x$ $\mathrm{L}=1, \mathrm{c}=1, \mathrm{~g}(\mathrm{x})=0, \mathrm{f}(\mathrm{x})=\mathrm{x}(\mathrm{x}-1)$

1. Overall aims of course

By the end of the course the students will be able to:

- Solve ordinary and partial differential equations numerically
- Recognize finite difference method in solving P.D.E.
- Describe error analysis and stability for P.D.E.

2. Intended Learning outcomes of Course (ILOs)

a. Knowledge and Understanding:
2.1.1 Identify theories, fundamentals of ordinary and partial differential equations [Q1, Q2]
2.1.3 Recognize the developments of finite difference method in solving P.D.E. [Q2]
2.1.4 Summarize the moral and legal principles of error analysis and stability \quad [Q1]
b. Intellectual Skills
2.2.5 Assess solutions of partial differential equations using finite difference method. [Q2]

c. Professional and Practical Skills

2.3.1 Interpret professional skills in estimating error analysis and stability. [Q1]

d. General and Transferable Skills

2.4.1 Communicate effectively using researches of new topics about solutions of ordinary and partial differential equations .
2.4.5 Assess the performance of error analysis and stability
2.4.6 Work in a group and manage time effectively
\square

