Benha University Faculty of Engineering-Shoubra
Electrical Engineering Department $1^{\text {st }}$ Year Communications

Final Term Exam
Date: 11 ${ }^{\text {th }}$ of Jan 2017
Mathematics 2A
Duration: 3 hours

- No. of questions: 4
- Total mark: 80 marks
- Illustrate your answers with sketches when necessary
- The exam consists of one page

Question 1 [15 marks]

Test the following series:
(a) $\sum_{k=0}^{\infty} \frac{2^{k}+3^{k}}{4^{k}+5^{k}}$
(b) $\sum_{k=2}^{\infty} \frac{(-1)^{k}}{k \ln (k)}$

Question 2 [25 marks]

Solve the following ODEs:
(a) $(x+y+4) d x+(2 x+2 y-1) d y=0$
(b) $y^{\prime \prime}-6 y^{\prime}+9 y=x^{-2} e^{3 x}$
(c) $y^{\prime \prime}+4 y=x \sin (2 x)$

Question 3 [25 marks]

(a) Evaluate $\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \vec{n} d S$ where $\vec{F}=\left(x^{2}+y-4\right) \vec{\imath}+(3 x y) \vec{\jmath}+\left(2 x z+z^{2}\right) \vec{k}$ and S is the surface bounded by the parabolid $z=4-\left(x^{2}+y^{2}\right), z \geq 0$.
(b) Verify Green's theorem for the integral $\oint_{C} x y d x+(x+y) d y$ where C is the path given by the two curves $x=y^{2}, y=x^{2}$.

Question 4 [15 marks]

(a) If $u=\frac{x+y+z}{x-y+2 z}+\sin ^{-1}\left(\frac{x}{y}\right)+4$, show that $x u_{x}+y u_{y}+z u_{z}=0$.
(b) Discuss the maxima and minima of $f(x, y)=\frac{1}{3} x^{3}+\frac{4}{3} y^{3}-x^{2}-3 x-4 y-3$

Model Answer

Answer of Question 1

(a) Take $b_{k}=\frac{2^{k}+3^{k}}{5^{k}}=\left(\frac{2}{5}\right)^{k}+\left(\frac{3}{5}\right)^{k}$ which is the sum of two conv. geometric series $(\mathrm{r}<$
$1)$ and the resultant series is conv., and since $a_{k}<b_{k}$, then the given series is conv.
(b) $\left|a_{k}\right|=\frac{1}{k \ln k}$, and since $\left|a_{k}\right|<\left|a_{k+1}\right|$ and $\lim _{k \rightarrow \infty}\left|a_{k}\right|=0$, then the series is conv.

And since $\sum_{k=2}^{\infty} \frac{1}{k \ln (k)}$ is div. (using integral test), then the given series is conditionally conv.

Answer of Question 2

(a) $\frac{d y}{d x}=y^{\prime}=\frac{x+y+4}{-(2 x+2 y-1)}$ which are two parallel lines, then put $\mathrm{u}=\mathrm{x}+\mathrm{y}$, so $u^{\prime}=1+$ $y^{\prime} \rightarrow y^{\prime}=u^{\prime}-1 \rightarrow \frac{d u}{d x}-1=\frac{u+4}{-(2 u-1)} \rightarrow \frac{d u}{d x}=\frac{5-u}{1-2 u} \rightarrow \frac{1-2 u}{5-u} d u=d x \rightarrow(2-$ $\left.\frac{9}{5-u}\right) d u=d x \rightarrow 2 u+9 \ln (5-u)=x+c \rightarrow 2 y+x+9 \ln (5-x-y)=c$
(b) The aux. eq. is $\mathrm{m}^{2}-6 \mathrm{~m}+9=0$, its roots are 3,3 , then $y_{c}=\left(c_{1}+c_{2} x\right) e^{3 x}$. Then u $=\mathrm{e}^{3 \mathrm{x}}, \mathrm{v}=\mathrm{xe}^{3 \mathrm{x}}, w=\left|\begin{array}{cc}e^{3 x} & x e^{3 x} \\ 3 e^{3 x} & e^{3 x}+3 x e^{3 x}\end{array}\right|=e^{6 x}$
$A=-\int \frac{x e^{3 x} \cdot x^{-2} e^{3 x}}{e^{6 x}} d x=-\ln x+c_{1}, B=\int \frac{e^{3 x} \cdot x^{-2} e^{3 x}}{e^{6 x}} d x=-\frac{1}{x}+c_{2}$
$\therefore y=\left(-\ln x+c_{1}\right) e^{3 x}+\left(-\frac{1}{x}+c_{2}\right) x e^{3 x}$
$\therefore y=\left(c_{1}+c_{2} x\right) e^{3 x}+(-\ln x-1) e^{3 x}$
(c) The aux. eq. is $\mathrm{m}^{2}+4=0$, its roots are $2 \mathrm{i},-2 \mathrm{i}$, then $y_{c}=c_{1} \cos 2 x+c_{2} \sin 2 x$.

Then $y_{p}=\frac{1}{D^{2}+4} \operatorname{Im}\left(x e^{2 i x}\right)=\frac{1}{64}\left[4 x \sin 2 x-\left(1+8 x^{2}\right) \cos 2 x\right]$
$\therefore y=y_{c}+y_{p}$

Answer of Question 3

(a) Apply the Stoke's theorem: $\oint_{C} \vec{F} \cdot \overrightarrow{d r}=\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \vec{n} d S$, where C is the circle on xy-plane $\mathrm{x}^{2}+\mathrm{y}^{2}=4, \mathrm{z}=0$, then $\oint_{C} \vec{F} \cdot \overrightarrow{d r}=\oint_{C}\left(x^{2}+y-4\right) d x+(3 x y) d y$, changing to polar coordinates: $\mathrm{x}=2 \cos \theta, \mathrm{dx}=-2 \sin \theta, \mathrm{y}=2 \sin \theta, \mathrm{dy}=2 \cos \theta$
$\therefore I_{l}=\int_{0}^{2 \pi}\left(16(\cos \theta)^{2} \sin \theta-4(\sin \theta)^{2}+8 \sin \theta\right) d \theta=-\left.2 \theta\right|_{0} ^{2 \pi}=-4 \pi$
(b) Green's th.: $\oint_{C} M d x+N d y=\iint_{S}\left(N_{x}-M_{y}\right) d x d y$
\underline{I}_{1} along $\mathrm{y}=\mathrm{x}^{2}$: $\mathrm{dy}=2 \mathrm{xdx}$, so $I_{1}=\int_{0}^{1}\left(2 x^{2}+3 x^{3}\right) d x=\frac{17}{12}$
\underline{I}_{2} along $\mathrm{x}=\mathrm{y}^{2}: \mathrm{dx}=2 \mathrm{ydy}$, so $I_{2}=\int_{1}^{0}\left(y+y^{2}+2 y^{4}\right) d x=-\frac{37}{30} \rightarrow I_{l}=I_{1}+I_{2}=\frac{11}{60}$

$$
\begin{aligned}
M=x y, N & =x+y \rightarrow I_{s}=\int_{0}^{1}\left[\int_{x=y^{2}}^{\sqrt{y}}(1-x) d x\right] d y=\int_{0}^{1}\left(\sqrt{y}-\frac{y}{2}-y^{2}+\frac{y^{4}}{2}\right) d y \\
& =\frac{11}{60} \rightarrow I_{l}=I_{s}
\end{aligned}
$$

Answer of Question 4

(a) Since u is hom. of degree 0 , then $x u_{x}+y u_{y}+z u_{z}=0$
(b) $f_{x}=x^{2}-2 x-3=0 \rightarrow x=3,-1$, and $f_{y}=4 y^{2}-4=0 \rightarrow y= \pm 1 \rightarrow$ the critical points are $(3,1),(3,-1),(-1,1),(-1,-1), f_{x x}=2 x-2>0, f_{y y}=8 y, f_{x y}=0$, $\Delta=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=16 y(x-1):$
at $(3,1): \Delta=32>0, f_{x x}=4>0 \rightarrow \min \rightarrow f(3,1)=\frac{-44}{3}$
at $(3,-1): \Delta=-32<0 \rightarrow$ saddle point
at $(-1,1): \Delta=-32<0 \rightarrow$ saddle point
at $(-1,-1): \Delta=32>0, f_{x x}=-4<0 \rightarrow \max \rightarrow f(-1,-1)=\frac{4}{3}$

