Benha University Faculty of Engineering-Shoubra Electrical Engineering Department 1st Year Communications

Final Term Exam Date: 11th of Jan 2017 Mathematics 2A Duration: 3 hours

- Answer all the following questions
- Illustrate your answers with sketches when necessary
- The exam consists of one page

Question 1 [15 marks]

Test the following series:

(a) $\sum_{k=0}^{\infty} \frac{2^{k}+3^{k}}{4^{k}+5^{k}}$ (b) $\sum_{k=2}^{\infty} \frac{(-1)^{k}}{k \ln(k)}$

Question 2 [25 marks]

Solve the following ODEs:

(a)
$$(x + y + 4)dx + (2x + 2y - 1)dy = 0$$
 (b) $y'' - 6y' + 9y = x^{-2}e^{3x}$
(c) $y'' + 4y = x\sin(2x)$

Question 3 [25 marks]

(a) Evaluate $\iint_{S} (\vec{\nabla} \times \vec{F}) \cdot \vec{n} \, dS$ where $\vec{F} = (x^2 + y - 4)\vec{i} + (3xy)\vec{j} + (2xz + z^2)\vec{k}$ and *S* is the surface bounded by the parabolid $z = 4 - (x^2 + y^2)$, $z \ge 0$.

(b) Verify Green's theorem for the integral $\oint_C xy \, dx + (x + y) \, dy$ where *C* is the path given by the two curves $x = y^2$, $y = x^2$.

Question 4 [15 marks]

(a) If $u = \frac{x+y+z}{x-y+2z} + \sin^{-1}(\frac{x}{y}) + 4$, show that $xu_x + yu_y + zu_z = 0$.

(b) Discuss the maxima and minima of $f(x, y) = \frac{1}{3}x^3 + \frac{4}{3}y^3 - x^2 - 3x - 4y - 3$

Dr. Ibrahim Sakr

Good Luck

Dr. Eng. Tarek Sallam

- No. of questions: 4
- Total mark: 80 marks

Model Answer

Answer of Question 1

(a) Take $b_k = \frac{2^k + 3^k}{5^k} = (\frac{2}{5})^k + (\frac{3}{5})^k$ which is the sum of two conv. geometric series (r < 1) and the resultant series is conv., and since $a_k < b_k$, then the given series is conv. (b) $|a_k| = \frac{1}{k \ln k}$, and since $|a_k| < |a_{k+1}|$ and $\lim_{k \to \infty} |a_k| = 0$, then the series is conv. And since $\sum_{k=2}^{\infty} \frac{1}{k \ln(k)}$ is div. (using integral test), then the given series is conditionally conv.

Answer of Question 2

(a) $\frac{dy}{dx} = y' = \frac{x+y+4}{-(2x+2y-1)}$ which are two parallel lines, then put u = x + y, so $u' = 1 + y' \to y' = u' - 1 \to \frac{du}{dx} - 1 = \frac{u+4}{-(2u-1)} \to \frac{du}{dx} = \frac{5-u}{1-2u} \to \frac{1-2u}{5-u} du = dx \to (2 - \frac{9}{5-u}) du = dx \to 2u + 9 \ln(5-u) = x + c \to 2y + x + 9 \ln(5-x-y) = c$ (b) The aux. eq. is $m^2 - 6m + 9 = 0$, its roots are 3, 3, then $y_c = (c_1 + c_2 x)e^{3x}$. Then $u = e^{3x}$, $v = xe^{3x}$, $w = \begin{vmatrix} e^{3x} & xe^{3x} \\ 3e^{3x} & e^{3x} + 3xe^{3x} \end{vmatrix} = e^{6x}$ $A = -\int \frac{xe^{3x}x^{-2}e^{3x}}{e^{6x}} dx = -\ln x + c_1, B = \int \frac{e^{3x}x^{-2}e^{3x}}{e^{6x}} dx = -\frac{1}{x} + c_2$ $\therefore y = (-\ln x + c_1) e^{3x} + (-\frac{1}{x} + c_2) xe^{3x}$ $\therefore y = (c_1 + c_2 x)e^{3x} + (-\ln x - 1)e^{3x}$ (c) The aux. eq. is $m^2 + 4 = 0$, its roots are 2i, -2i, then $y_c = c_1 \cos 2x + c_2 \sin 2x$. Then $y_p = \frac{1}{D^2 + 4} \ln(xe^{2ix}) = \frac{1}{64} [4x \sin 2x - (1 + 8x^2) \cos 2x]$

Answer of Question 3

(a) Apply the Stoke's theorem: $\oint_C \vec{F} \cdot \vec{dr} = \iint_S (\vec{\nabla} \times \vec{F}) \cdot \vec{n} \, dS$, where C is the circle on xy-plane $x^2 + y^2 = 4$, z = 0, then $\oint_C \vec{F} \cdot \vec{dr} = \oint_C (x^2 + y - 4)dx + (3xy)dy$, changing to polar coordinates: $x = 2\cos\theta$, $dx = -2\sin\theta$, $y = 2\sin\theta$, $dy = 2\cos\theta$ $\therefore I_l = \int_0^{2\pi} (16(\cos\theta)^2 \sin\theta - 4(\sin\theta)^2 + 8\sin\theta)d\theta = -2\theta|_0^{2\pi} = -4\pi$ (b) Green's th.: $\oint_C M \, dx + N \, dy = \iint_S (N_x - M_y)dxdy$ $I_1 \text{ along } y = x^2$: dy = 2xdx, so $I_1 = \int_0^1 (2x^2 + 3x^3)dx = \frac{17}{12}$ $I_2 \text{ along } x = y^2$: dx = 2ydy, so $I_2 = \int_1^0 (y + y^2 + 2y^4)dx = -\frac{37}{30} \rightarrow I_l = I_1 + I_2 = \frac{11}{60}$

$$M = xy, N = x + y \to I_s = \int_0^1 \left[\int_{x=y^2}^{\sqrt{y}} (1-x) dx \right] dy = \int_0^1 (\sqrt{y} - \frac{y}{2} - y^2 + \frac{y^4}{2}) dy$$
$$= \frac{11}{60} \to I_l = I_s$$

Answer of Question 4

(a) Since *u* is hom. of degree 0, then $xu_x + yu_y + zu_z = 0$ (b) $f_x = x^2 - 2x - 3 = 0 \rightarrow x = 3, -1, \text{ and } f_y = 4y^2 - 4 = 0 \rightarrow y = \pm 1 \rightarrow \text{ the critical points}$ are (3, 1), (3, -1), (-1, 1), (-1, -1), $f_{xx} = 2x - 2 > 0, f_{yy} = 8y, f_{xy} = 0,$ $\Delta = f_{xx}f_{yy} - (f_{xy})^2 = 16y(x - 1):$ at (3, 1): $\Delta = 32 > 0, f_{xx} = 4 > 0 \rightarrow \min \rightarrow f(3,1) = \frac{-44}{3}$ at (3, -1): $\Delta = -32 < 0 \rightarrow \text{ saddle point}$ at (-1, 1): $\Delta = -32 < 0 \rightarrow \text{ saddle point}$ at (-1, -1): $\Delta = 32 > 0, f_{xx} = -4 < 0 \rightarrow \max \rightarrow f(-1, -1) = \frac{4}{3}$