Benha University
Faculty of Engineering- Shoubra
Electrical Engineering Department
2nd ${ }^{\text {nd }}$ Year electrical power تخلفات

Final Term Exam
Date:24 th of December 2016
Mathematics 3A EMP 271
Duration : 3 hours

- No. of questions: 6
- Total Mark: 80 Marks
- Answer all the following question
- Illustrate your answers with sketches when necessary.
- The exam. Consists of one page

1- A fair coin is tossed 3 times, X is the N^{o} of heads that come up on the first 2 tosses and Y is the N^{0} of heads that come up on tosses 2,3 . Construct the joint distribution and find marginal of X and Y , also find the variance of $\mathrm{X}, \mathrm{Y} \& \mathrm{P}[(\mathrm{X}+\mathrm{Y})>1, \mathrm{X}>\mathrm{Y}]$.

2- If $f(X)=c x^{2} e^{-2 x}$ is P.d.f., $x>0$, find the mean and variance.
3- A urn contains 30 red balls and 20 black balls, sample of 5 balls is selected at random. Let X is the number of red balls, find $\mathrm{P}(\mathrm{X}=3), \mathrm{E}(\mathrm{X}), \operatorname{Var}(\mathrm{X})$.

4 - Let X be a random variable with gamma distribution with alpha $=2$, beta $=1 / 5$. Find the probability $\mathrm{P}(\mathrm{X}>30), \mathrm{E}(\mathrm{X})$ and $\operatorname{Var}(\mathrm{X})$.
5- Expand in fourier series the following periodic functions:
$f(x)=x|x|,-1<x<1$,
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}, \quad 0<\mathrm{x}<2$, then deduce $\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{4}}$
6- Find Fourier transform and Fourier integral $f(x)= \begin{cases}1-x^{2} & |x|<1 \\ 0 & |x|>1\end{cases}$

BOARD OF EXAMINERS

Dr. Khaled El Naggar

Model answer

1-

Y	X	0	1	2
$\mathrm{f}_{1}(\mathrm{x})$				
0	$1 / 8$	$1 / 8$	0	$2 / 8$
1	$1 / 8$	$2 / 8$	$1 / 8$	$4 / 8$
2	0	$1 / 8$	$1 / 8$	$2 / 8$
$\mathrm{f}_{2}(\mathrm{y})$	$2 / 8$	$4 / 8$	$2 / 8$	1

$\mathrm{E}(\mathrm{X})=0(2 / 8)+1(4 / 8)+2(2 / 8)=1, \mathrm{E}(\mathrm{Y})=0(2 / 8)+1(4 / 8)+2(2 / 8)=1, \mathrm{E}\left(\mathrm{X}^{2}\right)=1(4 / 8)+$ $4(2 / 8)=3 / 2, \mathrm{E}\left(\mathrm{Y}^{2}\right)=1(4 / 8)+4(2 / 8)=3 / 2, \operatorname{Var}(\mathrm{X})=\operatorname{Var}(\mathrm{Y})=1 / 2$.
$\mathrm{P}[(\mathrm{X}+\mathrm{Y})>1, \mathrm{X}>\mathrm{Y}]=\mathrm{P}(2,0)+\mathrm{P}(2,1)=1 / 8$
2- Since $f(X)=4 x^{2} e^{-2 x}$ is gamma distribution with $\alpha=3 \& \beta=2$, therefore $E(X)=\alpha /$
$\beta=3 / 2$ and variance is $\alpha / \beta^{2}=3 / 4$ and M.G.f $=\frac{\beta^{\alpha}}{(\beta-\mathrm{t})^{\alpha}}=\frac{2^{3}}{(2-\mathrm{t})^{3}}$
3- $\mathrm{N}=50, \mathrm{k}=30, \mathrm{n}=5$, therefore by using hypergeometric distribution

$$
\mathrm{P}(\mathrm{X}=3)=\left[{ }^{30} \mathrm{C}_{3}\right]\left[{ }^{20} \mathrm{C}_{2}\right] /\left[{ }^{50} \mathrm{C}_{5}\right]
$$

$\mathrm{E}(\mathrm{X})=\mathrm{n}(\mathrm{k} / \mathrm{N})=5(30 / 50)$ and $\mathrm{V}(\mathrm{X})=\left(\frac{\mathrm{N}-\mathrm{n}}{\mathrm{N}-1}\right) \mathrm{n}\left(\frac{\mathrm{k}}{\mathrm{N}}\right)\left(1-\frac{\mathrm{k}}{\mathrm{N}}\right)=5\left(\frac{45}{49}\right)\left(\frac{30}{50}\right)\left(\frac{20}{50}\right)$
4- $\mathrm{P}(\mathrm{X}>30)=\frac{1}{25} \int_{30}^{\infty} \mathrm{x} \mathrm{e}^{-\mathrm{x} / 5} \mathrm{dx}$, put $\mathrm{y}=\mathrm{x}-30$, therefore
$P(X>30)=\frac{1}{25} \int_{0}^{\infty}(y+30) \mathrm{e}^{-(y+30) / 5} d y=\frac{\mathrm{e}^{-6}}{25} \int_{0}^{\infty} y \mathrm{e}^{-\mathrm{y} / 5} \mathrm{dy}+\frac{6 \mathrm{e}^{-6}}{5} \int_{0}^{\infty} \mathrm{e}^{-\mathrm{y} / 5} d y$
Put $\mathrm{y} / 5=\mathrm{z} \Rightarrow \mathrm{dz}=\mathrm{dy} / 5$, therefore

$$
\mathrm{P}(\mathrm{X}>30)=\mathrm{e}^{-6} \int_{0}^{\infty} \mathrm{ze}^{-z} \mathrm{dz}+6 \mathrm{e}^{-6} \int_{0}^{\infty} \mathrm{e}^{-\mathrm{z}} \mathrm{dz}=7 \mathrm{e}^{-6}
$$

$E(X)=\alpha / \beta=10, \operatorname{Var}(X)=50$

5- The functions $f(x)=x|x|$ is even, therefore $a_{0}=a_{n}=0, T=1$, therefore

$$
\begin{aligned}
\mathrm{b}_{\mathrm{n}} & =\frac{2}{1} \int_{0}^{1} \mathrm{x}^{2} \sin \left(\frac{\mathrm{n} \pi \mathrm{x}}{1}\right) d x=\left[\mathrm{x}^{2}\left(-\frac{1}{\mathrm{n} \pi} \cos \left(\frac{\mathrm{n} \pi \mathrm{x}}{1}\right)\right)-2 \mathrm{x}\left(-\frac{1}{\mathrm{n}^{2} \pi^{2}} \sin \left(\frac{\mathrm{n} \pi \mathrm{x}}{1}\right)\right)+2\left(\frac{1}{\mathrm{n}^{3} \pi^{3}} \cos \left(\frac{\mathrm{n} \pi \mathrm{x}}{1}\right)\right)\right]_{0}^{1} \\
& =\left[\left(-\frac{1}{\mathrm{n} \pi} \cos \left(\frac{\mathrm{n} \pi}{1}\right)\right)+2\left(\frac{1}{\mathrm{n}^{3} \pi^{3}} \cos \left(\frac{\mathrm{n} \pi}{1}\right)-\frac{1}{\mathrm{n}^{3} \pi^{3}}\right)\right], \text { thus } \mathrm{f}(\mathrm{x})=\sum_{\mathrm{n}=1}^{\infty} \mathrm{b}_{\mathrm{n}} \sin \left(\frac{\mathrm{n} \pi \mathrm{x}}{\mathrm{~T}}\right)=\sum_{\mathrm{n}=1}^{\infty} \mathrm{b}_{\mathrm{n}} \sin (\mathrm{n} \pi \mathrm{x})
\end{aligned}
$$

This function is $f(x)=x^{2}$ neither even nor odd, therefore
$f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{T}\right)+b_{n} \sin \left(\frac{n \pi x}{T}\right) \quad, T=1$
$a_{0}=\frac{1}{1} \int_{0}^{2} f(x) d x==\frac{1}{1} \int_{0}^{2}\left(x^{2}\right) d x=\left.\left(\frac{x^{3}}{3}\right)\right|_{0} ^{2}=\frac{8}{3}$
$a_{n}=\frac{1}{1} \int_{0}^{2}\left(x^{2}\right) \cos \left(\frac{n \pi x}{1}\right) d x=\left[\left(x^{2}\right)\left(\frac{1}{n \pi} \sin \left(\frac{n \pi x}{1}\right)\right)-(2 x)\left(-\frac{1}{n^{2} \pi^{2}} \cos \left(\frac{n \pi x}{1}\right)\right)\right.$
$\left.+2\left(-\frac{1}{\mathrm{n}^{3} \pi^{3}} \sin \left(\frac{\mathrm{n} \pi \mathrm{x}}{1}\right)\right)\right]\left.\right|_{0} ^{2}=\frac{4}{\mathrm{n}^{2} \pi^{2}}$
$\mathrm{b}_{\mathrm{n}}=\frac{1}{1} \int_{0}^{2}\left(\mathrm{x}^{2}\right) \sin \left(\frac{\mathrm{n} \pi \mathrm{x}}{1}\right) \mathrm{dx}=\left[\left(\mathrm{x}^{2}\right)\left(\frac{-1}{\mathrm{n} \pi} \cos \left(\frac{\mathrm{n} \pi \mathrm{x}}{1}\right)\right)-(2 \mathrm{x})\left(-\frac{1}{\mathrm{n}^{2} \pi^{2}} \sin \left(\frac{\mathrm{n} \pi \mathrm{x}}{1}\right)\right)\right.$
$\left.+2\left(\frac{1}{n^{3} \pi^{3}} \cos \left(\frac{n \pi x}{1}\right)\right)\right]\left.\right|_{0} ^{2}=\frac{-4}{n \pi}$
6- Since this function is even, therefore there is only Fourier Cosine transform such that $\mathrm{F}_{\mathrm{c}}(\alpha)=\sqrt{2 / \pi} \int_{0}^{\infty} \mathrm{f}(\mathrm{x}) \cos \alpha \mathrm{xdx}=\sqrt{2 / \pi} \int_{0}^{1}\left(1-\mathrm{x}^{2}\right) \cos \alpha \mathrm{xdx}$

$$
\begin{aligned}
& =\sqrt{2 / \pi}\left[\left(1-x^{2}\right)\left(\frac{\sin \alpha x}{\alpha}\right)-(-2 x)\left(\frac{-\cos \alpha x}{\alpha^{2}}\right)+(-2)\left(\frac{-\sin \alpha x}{\alpha^{3}}\right)\right]_{0}^{1} \\
& =\sqrt{2 / \pi}\left[\frac{-2 \cos \alpha}{\alpha^{2}}+\frac{2 \sin \alpha}{\alpha^{3}}\right]=\frac{4}{\sqrt{2 \pi}}\left[\frac{\sin \alpha-\alpha \cos \alpha}{\alpha^{3}}\right]
\end{aligned}
$$

Therefore Fourier integral $f(x)$ is expressed by $f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F_{c}(\alpha) \cos \alpha x d \alpha$

