Final Term Exam
Date:24-12-2016
Mathematics 3A EMP 281
Duration : 3 hours

- Answer all the following question
- Illustrate your answers with sketches when necessary.
- No. of questions: 7
- Total Mark: 80 Marks
- The exam. Consists of one page

1-Susan goes to work by one of two routes A or B . The prob. of going by route A is $30 \%$. If she goes by route A , the prob. of being late is $5 \%$ and if she goes by route B , the prob. of being late is $10 \%$. Given Susan is late for shool, find prob. that she went via route $B$.

2- A box contains 7 blue , 8 white and 9 red balls, two balls are drawn without replacement. Let X is the number of blue balls and Y is the number of red balls, Find joint probability function, $\operatorname{Cov}(\mathrm{x}, \mathrm{y}), \mathrm{P}(\mathrm{X}+\mathrm{Y}=2)$.

3- $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{cxy}, \quad 0<\mathrm{y}<\mathrm{x}<1$. Find $\operatorname{Cov}(\mathrm{x}, \mathrm{y}), \mathrm{P}[(\mathrm{X}+\mathrm{Y})<1 / 2]$
4-Evaluate m.g.f. for the random variable of exponential and gamma distributions, then deduce $\mu_{r}^{\prime}, r=0,1,2$

5- Expand the function $f(x)=x^{2}, 0 \leq x \leq 2, T=4$ in even sine harmonic.

6- Expand in fourier series the following periodic functions:
i) $f(x)=10-x, \quad 5<x<15$,
ii) $f(x)=|\cos x|$
$0<x<2 \pi$

7- Solve the integral equation $\int_{0}^{\infty} f(x) \sin (\alpha x) d x=\left\{\begin{array}{cc}1 & 0 \leq \alpha<1 \\ 2 & 1 \leq \alpha<2 \\ 0 & 2 \leq \alpha\end{array}\right.$

1) $\mathrm{P}(\mathrm{A})=0.3, \mathrm{P}(\mathrm{B})=0.7, \mathrm{P}(\mathrm{L} / \mathrm{A})=0.05, \mathrm{P}(\mathrm{L} / \mathrm{B})=0.1, \mathrm{P}(\mathrm{B} / \mathrm{L})=[\mathrm{P}(\mathrm{L} / \mathrm{B}) \mathrm{P}(\mathrm{B})] / \mathrm{P}(\mathrm{L})$, where L : is Late event, $\mathrm{P}(\mathrm{L})=\mathrm{P}(\mathrm{L} / \mathrm{A}) \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{L} / \mathrm{B}) \mathrm{P}(\mathrm{B})=0.05(0.3)+0.1(0.7)=$ 0.085 , so $\mathrm{P}(\mathrm{B} / \mathrm{L})=0.1(0.7) / 0.085=0.824$
2) 

| X |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Y | 0 | 1 | 2 | $\mathrm{f}_{1}(\mathrm{x})$ |
| 0 | $\mathrm{P}(\mathrm{WW})=0.1014$ | $2 \mathrm{P}(\mathrm{BW})=0.2029$ | $\mathrm{P}(\mathrm{BB})=0.0761$ | 0.3804 |
| 1 | $2 \mathrm{P}(\mathrm{RW})=0.2609$ | $2 \mathrm{P}(\mathrm{BR})=0.2283$ | 0 | 0.4892 |
| 2 | $\mathrm{P}(\mathrm{RR})=0.1304$ | 0 | 0 | 0.1304 |
| $\mathrm{f}_{1}(\mathrm{x})$ | 0.4927 | 0.4312 | 0.0761 | 1 |

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}+\mathrm{Y}=2)=\mathrm{f}(1,1)+\mathrm{f}(2,0)+\mathrm{f}(0,2)=0.2283+0.0761+0.1304=0.4348 \\
& \mathrm{E}(\mathrm{Y})=0(0.3804)+1(0.4892)+2(0.1304)=0.75, \mathrm{E}(\mathrm{X})=0(0.4927)+1(0.4312)+2(0.0761) \\
& =0.5834, \mathrm{E}(\mathrm{XY})=0(0.1014)+0(0.2029)+0(0.0761)+0(0.2609)+1(0.2283)+2(0)+ \\
& 0(0.1304)+2(0)+4(0)=0.2283, \text { therefore } \operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\mathrm{E}(\mathrm{XY})-\mathrm{E}(\mathrm{X}) \mathrm{E}(\mathrm{Y})=-0.2093
\end{aligned}
$$

3) P First we have to get $c$, such that $\int_{y=0}^{1} \int_{x=y}^{1} c x y d x d y=1 \Rightarrow \int_{y=0}^{1} \frac{y-y^{3}}{2} d y=1 \Rightarrow c=8$

The marginal probabilities $f_{1}(x), f_{2}(y)$ are expressed by:
$\mathrm{f}_{1}(\mathrm{x})=\int_{0}^{\mathrm{x}} 8 x y d y=\left.4 \mathrm{xy}^{2}\right|_{0} ^{\mathrm{x}}=4 \mathrm{x}^{3}$ and $\mathrm{f}_{2}(\mathrm{y})=\int_{\mathrm{y}}^{1} 8 x y d x=\left.4 \mathrm{yx}^{2}\right|_{y} ^{1}=4\left(y-y^{3}\right)$
$E(X)=\int_{0}^{1} x f_{1}(x) d x=\int_{0}^{1} 4 x^{4} d x=4 / 5, E(Y)=\int_{0}^{1} y f_{2}(y) d y=\int_{0}^{1} 4 y\left(y-y^{3}\right) d y=8 / 15$
$E(X Y)=\int_{y=0}^{1} \int_{x=y}^{1} 8 x^{2} y^{2} d x d y=4 / 9, \operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=4 / 9-(4 / 5)(8 / 15)=0.0177$

$P(X+Y<1 / 2)=\int_{y=0}^{1 / 4} \int_{x=y}^{x=1 / 2-y} 8 x y d x d y=\left.\int_{y=0}^{1} 4 x^{2} y\right|_{x=y} ^{1 / 2-y} d y=\int_{y=0}^{1}(1-4 y) y d y=5 / 6$
4) The moment generating function of a exponential distribution is expressed by $\mathrm{E}\left(\mathrm{e}^{\mathrm{tx}}\right)=\int_{0}^{\infty} \mathrm{e}^{\mathrm{tx}}\left(\lambda \mathrm{e}^{-\lambda \mathrm{x}}\right) \mathrm{dx}=\int_{0}^{\infty} \lambda \mathrm{e}^{-(\lambda-\mathrm{t}) \mathrm{x}} \mathrm{dx}=\frac{\lambda}{(\lambda-\mathrm{t})}, \mu_{0}^{\prime}=1, \mu_{1}^{\prime}=\mathrm{E}(\mathrm{X})=\frac{1}{\lambda}, \mu^{\prime}{ }_{2}=\mathrm{E}\left(\mathrm{X}^{2}\right)=\frac{2}{\lambda^{2}}$
The moment generating function of gamma distribution can be expressed by

$$
E\left(e^{\mathrm{tx}}\right)=\int_{0}^{\infty} \mathrm{e}^{\mathrm{tx}}\left(\frac{\beta^{\alpha}}{\Gamma \alpha} x^{\alpha-1} e^{-\beta \mathrm{x}}\right) d x=\frac{\beta^{\alpha}}{\Gamma \alpha} \int_{0}^{\infty} \mathrm{x}^{\alpha-1} \mathrm{e}^{-(\beta-t) \mathrm{x}} \mathrm{dx}
$$

Put $(\beta-t) x=y \Rightarrow d x=\frac{d y}{\beta-t}$, thus $E\left(e^{t x}\right)=\frac{\beta^{\alpha}}{(\beta-t)^{\alpha} \Gamma \alpha} \int_{0}^{\infty} y^{\alpha-1} e^{-y} d y=\frac{\beta^{\alpha}}{(\beta-t)^{\alpha}}$
5) $f(x)=\sum_{n=1}^{\infty} b_{2 n} \sin \left(\frac{2 n \pi x}{T}\right)$, where $a_{0}=a_{2 n}=0$, and
$\mathrm{b}_{2 \mathrm{n}}=\frac{4}{\mathrm{~T}} \int_{0}^{\mathrm{T} / 2} \mathrm{f}(\mathrm{x}) \sin \left(\frac{2 \mathrm{n} \pi \mathrm{x}}{\mathrm{T}}\right) \mathrm{dx}=\frac{4}{4} \int_{0}^{2} \mathrm{x}^{2} \sin \left(\frac{\mathrm{n} \pi \mathrm{x}}{2}\right) \mathrm{dx}$
$=\left(x^{2}\left(-\frac{2 \cos \left(\frac{n \pi x}{2}\right)}{n \pi}\right)-2 x\left(-\frac{4 \sin \left(\frac{n \pi x}{2}\right)}{n^{2} \pi^{2}}\right)+2\left(\frac{8 \cos \left(\frac{n \pi x}{2}\right)}{n^{3} \pi^{3}}\right)\right)_{0}^{2}$
$=\frac{-8}{n \pi} \cos n \pi+\frac{16(\cos (n \pi)-1)}{n^{3} \pi^{3}}$

6- put $X=x-10$, then the function becomes $f(X)=-X$ which is odd, $-5<X<5$, thus $a_{0}$ $=a_{n}=0$
$\mathrm{b}_{\mathrm{n}}=\frac{2}{5} \int_{0}^{5}-X \sin \left(\frac{\mathrm{n} \pi}{5}\right) X d X=-\left.\frac{2}{5}\left[X\left(-\cos \left(\frac{\mathrm{n} \pi}{5}\right) X\right) \frac{5}{\mathrm{n} \pi}-\left(-\sin \left(\frac{\mathrm{n} \pi}{5}\right) X\right) \frac{25}{\mathrm{n}^{2} \pi^{2}}\right]\right|_{0} ^{5}=\frac{10}{\mathrm{n} \pi} \cos (\mathrm{n} \pi)$, therefore

$$
f(x)=\sum_{n=1}^{\infty} \frac{10 \cos (n \pi)}{n \pi} \sin \left(\frac{n \pi}{5}\right)(x-10)
$$

6-ii) This function is even cosine harmonic, therefore $a_{0}=\frac{4}{T} \int_{0}^{T / 2} f(x) d x=$

$$
\frac{4}{\pi} \int_{0}^{\pi / 2} \cos (x) d x=\frac{4}{\pi}
$$

$$
a_{2 n}=\frac{4}{T} \int_{0}^{T / 2} f(x) \cos \left(\frac{2 n \pi x}{T}\right) d x=\frac{4}{\pi} \int_{0}^{\pi / 2} \cos (x) \cos (2 n x) d x=\frac{4 \cos (n \pi)}{\pi(2 n-1)(2 n+1)}, b_{2 n}=0
$$

3-b) Since $T=\pi$, therefore
$c_{n}=\frac{1}{2 \pi} \int_{-T}^{T} f(x) e^{-i\left(\frac{n \pi x}{T}\right)} d x=\frac{1}{2 \pi} \int_{0}^{\pi} e^{-i(n x)} d x=\frac{i}{2 \pi n}\left[e^{-i(n \pi)}-1\right]=\frac{i}{2 \pi n}[\cos (n \pi)-1]$
Thus $\mathrm{c}_{2 \mathrm{n}-1}=\frac{-\mathrm{i}}{\pi n}$, therefore $\mathrm{f}(\mathrm{x})=\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{c}_{2 \mathrm{n}-1} \mathrm{e}^{-\mathrm{i}(2 \mathrm{n}-1) \mathrm{x}}$,

4-a) $\mathrm{F}_{\mathrm{S}}(\alpha)=\sqrt{2 / \pi} \int_{0}^{\infty} \sin \alpha \mathrm{xdx}=\sqrt{2 / \pi}\left\{\begin{array}{ll}1 & 0 \leq \alpha<1 \\ 2 & 1 \leq \alpha<2 \\ 0 & 2 \leq \alpha\end{array}\right.$, therefore
$f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F_{S}(\alpha) \sin \alpha x d \alpha=\frac{2}{\pi}\left[\int_{0}^{1} \sin \alpha x d \alpha+\int_{1}^{2} 2 \sin \alpha x d \alpha\right]=\frac{2}{\pi}\left[\frac{1+\cos \alpha-2 \cos 2 \alpha}{x}\right]$

4b- i) we have to extend this function to be even such that:
$\mathrm{a}_{0}=\frac{2}{1} \int_{0}^{1} \mathrm{xdx}=\left(\frac{2 \mathrm{x}^{2}}{2}\right)_{0}^{1}=1$
$a_{n}=\frac{2}{1} \int_{0}^{1} x \cos \left(\frac{n \pi x}{1}\right) d x=2\left[x \frac{\sin (n \pi x)}{n \pi}+\frac{\cos (n \pi x)}{n^{2} \pi^{2}}\right]_{0}^{1}=2\left[\frac{\cos (n \pi)-1}{n^{2} \pi^{2}}\right]$
Therefore $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{T}\right)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{-4}{n^{2} \pi^{2}} \cos (2 n \pi x)$,
4b-ii) Thus $f(x)=\sum_{n=1}^{\infty} a_{2 n-1} \cos (2 n-1) x+\sum_{n=1}^{\infty} b_{2 n-1} \sin (2 n-1) x$
$\mathrm{a}_{2 \mathrm{n}-1}=\frac{2}{1} \int_{0}^{1} \mathrm{x} \cos (2 \mathrm{n}-1) \pi \mathrm{xdx}$

$$
=\frac{2}{1}\left(x\left(\frac{\sin (2 n-1) \pi x}{(2 n-1) \pi}\right)-\left(\frac{-\cos (2 n-1) \pi x}{(2 n-1)^{2} \pi^{2}}\right)\right)_{0}^{1}=\frac{-4}{(2 n-1)^{2} \pi^{2}}
$$

$\mathrm{b}_{2 \mathrm{n}-1}=\frac{2}{1} \int_{0}^{1} \mathrm{x} \sin (2 \mathrm{n}-1) \pi \mathrm{xdx}$

$$
\begin{aligned}
& =\frac{2}{1}\left(x\left(\frac{-\cos (2 n-1) \pi x}{(2 n-1) \pi}\right)-\left(\frac{-\sin (2 n-1) \pi x}{(2 n-1)^{2} \pi^{2}}\right)\right)_{0}^{1} \\
& =\frac{2}{\pi(2 n-1)}
\end{aligned}
$$

Therefore $f(x)=\sum_{n=1}^{\infty} b_{2 n-1} \sin (2 n-1) x=-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos n \pi}{(2 n-1)^{2}} \sin (2 n-1) x$

