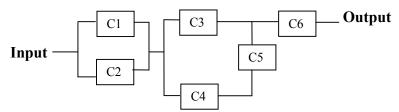
Benha University Faculty of Engineering- Shoubra (Electrical)Engineering Department

Final term exam Date: 9-1-2017
Mathematics 3A Code: EMP 271

Total Mark:


Duration : 3 hours

Answer the following questions

No. of questions: 4

1-a) Given the system of components c_i , i=1,2,...,6 with reliabilities 0.8, 0.7, 0.9, 0.6, 0.7, 0.8 respectively.

Calculate all possible overall reliability if one of the components is out of order.

1-b) The joint density function of two random variables X & Y is given by $f(x,y) = \frac{xy}{96}$, 0 < x < 4,

1 < y < 5. Find Cov(x,y) and check for independence, then find P(X+Y > 3/2) and cov(x,y).

2-a) Four sided die is rolled twice, let r.v. X is difference of the two scores and r.v. Y is the sum of the two scores. Discuss the joint distribution.

2- b) A coin is biased so that heads is twice the tails for three independent tosses of the coin. Find the probability of getting at most two heads, and standard deviation.

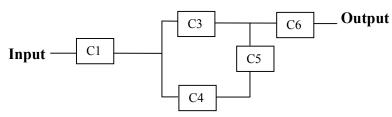
3-a) A card is drawn at random from a standard deck of playing cards. What is the Prob. that the card is less than a 7 given: A) The card is not a 2, B) The card is a heart, C) The card is a 3 or 4 3-b) Find complex Fourier for $f(x) = e^{-x}$, -2 < x < 2

4-a) Find Fourier transform and Fourier integral for $f(x) = \begin{cases} 1 & 0 < x < a \\ -1 & -a < x < 0 \\ 0 & |x| > a \end{cases}$

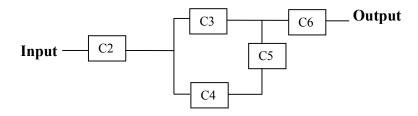
4-b) Suppose that X is a normal random variable with mean 5. If $P\{X>9\} = 0.2$, approximately. What is var(X)?

Dr. eng. Khaled El Naggar

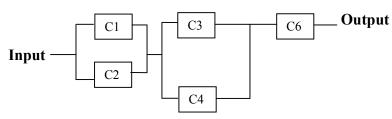
Tables of the Normal Distribution



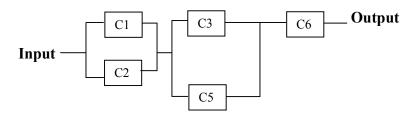
Probability Content from -oo to Z

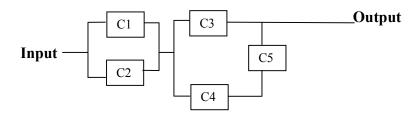

Z	I	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
		0.5000						0.5239	0.5279	0.5319	0.5359
0.1	I	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	I	0.5793	0.5832	$\boldsymbol{0.5871}$	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	I	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	I	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	I	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	I	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	I	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	I	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	I	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	I	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	I	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	I	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	I	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	I	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	I	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	I	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	I	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	I	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	I	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	I	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	I	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	I	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	I	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	I	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	I	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	I	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	I	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	I	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	I	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	I	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Model answer


Answer of Question 1a

 $R = c1 \cdot [1-(1-c3)(1-c4.c5)] \cdot c6$


$$R = c2. [1-(1-c3)(1-c4.c5)].c6$$


$$R = [1-(1-c1)(1-c2)][1-(1-c3)(1-c4)]$$
. c6

$$R = [1-(1-c1)(1-c2)] c4. c5. c6$$

$$R = [1-(1-c1)(1-c2)][1-(1-c3)(1-c5)]$$
. c6

$$R = [1-(1-c1)(1-c2)][1-(1-c3)(1-c5)]$$

Answer of Question 1b

The marginal probabilities $f_1(x)$, $f_2(y)$ are expressed by:

$$\begin{split} f_1(x) &= \int\limits_1^5 \frac{xy}{96} \, dy = \frac{xy^2}{192} \bigg|_1^5 = \frac{x}{8} \, \text{and} \quad f_2(y) = \int\limits_0^4 \frac{xy}{96} \, dx = \frac{x^2y}{192} \bigg|_0^4 = \frac{y}{12}, \text{ therefore they are} \\ &\text{independent and } E(X) = \int\limits_0^4 \frac{x^2}{8} \, dx = \frac{x^3}{24} \bigg|_0^4 = \frac{8}{3}, \quad E(Y) = \int\limits_1^5 \frac{y^2}{12} \, dx = \frac{y^3}{36} \bigg|_1^5 = \frac{31}{9}, \text{ but} \\ E(XY) &= E(X)E(Y) = \frac{248}{27} \, \text{and} \, E(2X + 3Y) = 2E(X) + 3E(Y) = \frac{16}{3} + \frac{31}{3} = \frac{47}{3}, \text{ thus} \end{split}$$

$$cov(x, y) = 0$$

Answer of Question 2a

X	0	1	2	3	f_y
у					
2	1/16	0	0	0	1/16
3	0	2/16	0	0	2/16
4	1/16	0	2/16	0	3/16
5	0	2/16	0	2/16	4/16
6	1/16	0	2/16	0	3/16
7	0	2/16	0	0	2/16
8	1/16	0	0	0	1/16
f_x	1/4	6/16	4/16	2/16	1

Answer of Question 2b

$$\begin{split} &P(H)=2\ P(T),\ \text{therefore }P(H)=2/3=P,\ \text{and }P(H\leq 2)=\sum_{x=0}^2 {}^3c_x\,(2/3)^x(1/3)^{3-x}\\ &P(x=0)={}^3c_0\,(2/3)^0(1/3)^3,\ P(x=1)=\sum_{x=0}^1 {}^3c_x\,(2/3)^x(1/3)^{3-x},\ n=3\\ &P(x=2)=\sum_{x=0}^2 {}^3c_x\,(2/3)^x(1/3)^{3-x},\ \text{var}(x)=npq=3(2/3)(1/3)=2/3,\ \text{therefore standard deviation}=\sqrt{\frac{2}{3}}\,. \end{split}$$

Answer of Question 3a

 $D = \{card \text{ is less than a 7}\} = \{24 \text{ cards}\}\$

 $A = \{ \text{card is not a 2} \} = \{ 48 \text{ cards} \}, \text{ therefore } P(D/A) = 20/48 = 5/12$

 $B = \{\text{card is a heart}\} = \{13 \text{ cards}\}, \text{ therefore } P(D/B) = 6/13,$

 $C = \{ \text{card is a 3 or 4} \} = \{ 8 \text{ cards} \}, \text{ therefore } P(D/C) = 1.$

Answer of Question 3b

Since T = 2, therefore

$$c_n = \frac{1}{2T} \int_{-T}^{T} f(x) e^{-i(\frac{n\pi x}{T})} dx = \frac{1}{4} \int_{-2}^{2} e^{-x} e^{-i(\frac{n\pi x}{2})} dx = \frac{1}{4} \int_{-2}^{2} e^{-(1+\frac{in\pi}{2})x} dx$$

$$= -\frac{1}{2(2+in\pi)} \left(e^{-\left(1+\frac{in\pi}{2}\right)x}\right)_{-2}^{2} = \frac{1}{2(2+in\pi)} \left(e^{\left(2+in\pi\right)} - e^{-\left(2+in\pi\right)}\right) = \frac{i}{(2+in\pi)} \sin(2+in\pi)$$

$$= -\frac{1}{(2+in\pi)}(\cos 2\sinh n\pi - i\sin 2\cosh n\pi)$$

Answer of Question 4a

Since the function f(x) is odd therefore

$$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F_{S}(\alpha) \sin \alpha x \, d\alpha$$

$$F_S(\alpha) = \sqrt{2/\pi} \int_0^a \sin\alpha x \ dx = \sqrt{2/\pi} (\frac{-\cos\alpha x}{\alpha})_0^a = \sqrt{2/\pi} (\frac{1-\cos\alpha a}{\alpha}) \text{ Therefore}$$

$$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F_{S}(\alpha) \sin \alpha x \ d\alpha = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \sqrt{2/\pi} (\frac{1 - \cos \alpha a}{\alpha}) \sin \alpha x \ d\alpha, \text{ hence}$$

$$f(x) = \frac{2}{\pi} \int_{0}^{\infty} (\frac{1 - \cos \alpha a}{\alpha}) \sin \alpha x \ d\alpha = \begin{cases} 1 & 0 < x < a \\ -1 & -a < x < 0 \\ 0 & |x| > a \end{cases}.$$

At
$$x = 0$$
, $f(x) = \frac{2}{\pi} \int_{0}^{\infty} (\frac{1 - \cos \alpha a}{\alpha}) \sin \alpha x \, d\alpha = 0 = \frac{1}{2} [f(0^{+}) + f(0^{-})] = \frac{1}{2} [1 - 1]$, so Fourier

integral is verified.

Answer of Question 4b

The probability function is an exponential distribution with c = 1/40

$$P(X > x) = 1 - P(X < x) = 1 - \int_0^x \frac{1}{40} e^{-x/40} dx = e^{-x/40}$$
. To get the median a such that $P(X < a) = 0.5$, therefore $\int_0^a \frac{1}{40} e^{-x/40} dx = 0.5$, thus $1 - e^{-a/40} = 0.5 \Rightarrow a = -40 \ln(0.5) = 27.726$, mean = 40, Variance = 1600 and so standard deviation = 40.

Intended Learning Outcomes of Course (ILOS)

a- Knowledge and Understanding

On completing this course, students will be able to:

- a.1) Recognize concepts and theories of mathematics and sciences, appropriate to the discipline. (a.1)
- a.2) Recognize methodologies of solving engineering problems. (a.5)

b- Intellectual Skills

At the end of this course, the students will be able to:

- b.1) Select appropriate mathematical and computer-based methods for modeling and analyzing problems. (b.1)
- b.2) Select appropriate solutions for engineering problems based on analytical thinking. (b.2)
- b.3) Solve engineering problems, often on the basis of limited and possibly contradicting information. (b.7)

c- Professional Skills

On completing this course, the students are expected to be able to:

- c.1) Apply knowledge of mathematics, science, information technology, design, business context and engineering practice to solve engineering problems. (c.1)
- c.2) Apply numerical modeling methods to engineering problems. (c.7)

Question	Marks	Achieved ILOS
1	20	a1,b1
2	20	a1,c1
3	20	a5, b2,b7
4	20	c7,b7