Benha University		Final term exam	Date: 12-1-2017
Faculty of Engineering- Shoubra		Mathematics 3A	Code: EMP 281
(Electrical)Engineering Department	No. of questions:	$\mathbf{4}$	Duration : 3 hours
Answer the following questions	Total Mark: 80		

1-a) Find Reliability of the system

If the Dot-matrix printer is out of order, calculate the reliability.
1-b) If the Random variables X and Y are independent where the probability density function of X is $f_{x}=6 x(1-x), 0<x<1$ and the probability density function of Y is $f_{y}=12 y^{2}(1-y), 0<y<1$. Find the Joint probability $\mathrm{f}(\mathrm{x}, \mathrm{y})$ and $\mathrm{P}(\mathrm{X}+\mathrm{Y}<1)$.

2-a) A random distribution of 3 balls into 3 cells, where r.v. X is number of balls in cell 1 and r.v. Y is the number of occupied cells. Discuss the joint distribution.

If r.v. Z is the number of balls in cell 2, discuss the joint distribution between $\mathrm{X} \& \mathrm{Z}$.
2-b) Expand into complex Fourier series the periodic function $f(x)=\left\{\begin{array}{ll}0, & -\pi<x<0 \\ 1, & 0<x<\pi\end{array}\right.$ of period 2π
3-a) Find Fourier transform and Fourier integral $f(x)= \begin{cases}1-x^{2} & |x|<1 \\ 0 & |x|>1\end{cases}$
3-b) In a bolt factory, machines A,B,C manufacture such that machine A produce twice that of machine B which produce half that of machine $\mathrm{C}, 2 \%, 4 \%, 5 \%$ are defective bolts respectively , a bolt is drawn at random and it is a defective quality, what is the probability that it was produced by machine $\mathrm{A}, \mathrm{B}, \mathrm{C}$.

4-a) When Justin is goal-keeper, Shaunie manages to score an average of once for every 10 shots he takes. If Shaunie takes 12 shots, find the following probability that he scores at most twice.

4-b) If $f(x)=c x^{2} e^{-2 x}$ is P.d.f., $x>0$, find c, mean and variance.

Dr.eng.khaled El Naggar

Model answer

Answer of Question 1a

Reliability $=0.995(0.99)[1-(0.02)(0.02)(0.05)][1-(0.035)(0.001)]=0.985$.
Since the Dot-matrix printer is out of order, therefore the reliability will be $0.995(0.99)[1-(0.02)(0.02)(0.05)](0.965)=0.951$

Answer of Question 1b

Since X and Y are independent, therefore $f(x, y)=f_{x} f_{y}$
Hence prob. density function $f(x, y)=72 x^{2}(1-x)(1-y), 0<x<1 \& 0<y<1$

$P(X+Y<1)=\int_{0}^{1} \int_{0}^{1-y} 72 x^{2}(1-x)(1-y) d x$

Answer of Question 2a

X	0	1	2	3	f_{y}
Y					
1	$2 / 27$	0	0	$1 / 27$	$3 / 27$
2	$6 / 27$	$6 / 27$	$6 / 27$	0	$18 / 27$
3	0	$6 / 27$	0	0	$6 / 27$
f_{x}	$8 / 27$	$12 / 27$	$6 / 27$	$1 / 27$	1

X	0	1	2	3	f_{z}
Z					
0	$1 / 27$	$3 / 27$	$3 / 27$	$1 / 27$	$8 / 27$
1	$3 / 27$	$6 / 27$	$3 / 27$	0	$12 / 27$
2	$3 / 27$	$3 / 27$	0	0	$6 / 27$
3	$1 / 27$	0	0	0	$1 / 27$
f_{x}	$8 / 27$	$12 / 27$	$6 / 27$	$1 / 27$	1

Answer of Question 2b

Since $\mathrm{T}=\pi$, therefore
$c_{n}=\frac{1}{2 \pi} \int_{-T}^{T} f(x) e^{-i\left(\frac{n \pi x}{T}\right)} d x=\frac{1}{2 \pi} \int_{0}^{\pi} e^{-i(n x)} d x=\frac{i}{2 \pi n}\left[e^{-i(n \pi)}-1\right]=\frac{i}{2 \pi n}[\cos (n \pi)-$
Thus $c_{2 n-1}=\frac{-i}{\pi n}$, therefore $f(x)=\sum_{n=-\infty}^{\infty} c_{2 n-1} e^{-i(2 n-1) x}$,

Answer of Question 3a

Since this function is even, therefore there is only Fourier Cosine transform such that $F_{c}(\alpha)=\sqrt{2 / \pi} \int_{0}^{\infty} f(x) \cos \alpha x d x=\sqrt{2 / \pi} \int_{0}^{1}\left(1-x^{2}\right) \cos \alpha x d x$

$$
=\sqrt{2 / \pi}\left[\left(1-x^{2}\right)\left(\frac{\sin \alpha x}{\alpha}\right)-(-2 x)\left(\frac{-\cos \alpha x}{\alpha^{2}}\right)+(-2)\left(\frac{-\sin \alpha x}{\alpha^{3}}\right)\right]_{0}^{1}
$$

$$
=\sqrt{2 / \pi}\left[\frac{-2 \cos \alpha}{\alpha^{2}}+\frac{2 \sin \alpha}{\alpha^{3}}\right]=\frac{4}{\sqrt{2 \pi}}\left[\frac{\sin \alpha-\alpha \cos \alpha}{\alpha^{3}}\right]
$$

Therefore Fourier integral $f(x)$ is expressed by $f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F_{c}(\alpha) \cos \alpha x d \alpha$

Answer of Question 3b

Let the defective event is D and the probability of machines $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are $2 / 5,1 / 5$, $2 / 5$ respectively, also $\mathrm{P}(\mathrm{D} / \mathrm{A})=0.02, \mathrm{P}(\mathrm{D} / \mathrm{B})=0.04, \mathrm{P}(\mathrm{D} / \mathrm{C})=0.05$, therefore $\mathrm{P}(\mathrm{C} / \mathrm{D})=\frac{\mathrm{P}(\mathrm{D} / \mathrm{C}) \mathrm{P}(\mathrm{C})}{\mathrm{P}(\mathrm{D})}, \mathrm{P}(\mathrm{B} / \mathrm{D})=\frac{\mathrm{P}(\mathrm{D} / \mathrm{B}) \mathrm{P}(\mathrm{B})}{\mathrm{P}(\mathrm{D})}, \mathrm{P}(\mathrm{D})=\mathrm{P}(\mathrm{D} / \mathrm{A}) \mathrm{P}(\mathrm{A})+$ $\mathrm{P}(\mathrm{D} / \mathrm{B}) \mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{D} / \mathrm{C}) \mathrm{P}(\mathrm{C})$

Answer of Question 4a

By using Binomial distribution, $\mathrm{n}=12, \mathrm{p}=0.1$, therefore
$\mathrm{p}(\mathrm{x} \leq 2)=\sum_{\mathrm{x}=0}^{2} 12 \mathrm{c}_{\mathrm{x}}(0.1)^{\mathrm{x}}(0.9)^{12-\mathrm{x}}$

Answer of Question 4b

Since $f(X)=4 x^{2} e^{-2 x}$ is gamma distribution with $\alpha=3 \& \beta=2$, therefore $\mathrm{E}(\mathrm{X})=\alpha / \beta=3 / 2$ and variance is $\alpha / \beta^{2}=3 / 4$

- Intended Learning Outcomes of Course (ILOS)

a- Knowledge and Understanding
On completing this course, students will be able to:
a-1-Recognize concepts and theories of mathematics and sciences (a1)
a-2-Recognize methodologies of solving engineering problems, data collection interpretation. (a6)
b- Intellectual Skills
At the end of this course, the students will be able to:
b- 1 - Select appropriate mathematical and computer-based methods for modeling and analyzing problems. (b1)
b- 2 - Select appropriate solutions for engineering problems based on analytical thinking. (b3)
b-3-Solve engineering problems, often on the basis of limited and possibly contradicting information. (b8)

c- Professional Skills

On completing this course, the students are expected to be able to:
c- 1 - Apply knowledge of mathematics, science, information technology, design, busin ϵ c- 2 - Apply numerical modeling methods to engineering problems. (c7)

d- General Skills

At the end of this course, the students will be able to:
d-1- Work in stressful environment and within constraints. (d2)

Questions	Total marks	Achieved ILOS
Q1	$\mathbf{2 0}$	b1
Q2	20	a1
Q3	20	a2, c1
Q4	$\mathbf{2 0}$	b2

Board of examiners: Dr. eng. Khaled El Naggar

