

Number of questions: 3

The exam consists of two pages.

[15 marks]

- Answer all the following questions.
- Illustrate your answers with sketches when necessary.
- Total mark: 40 marks

<u>Q.1</u> Write true or false with correcting the wrong statement

- 1- A module in a solar panel refers to <u>series arrangement</u> of solar cells. (false, series and parallel arrangement)
- 2- A pyrometer is used for the measurements of both direct and diffused radiations. (True)
- 3- If every Egyptian household replaced 3 incandescent light bulbs with LED light bulbs, the Egyptian carbon dioxide emissions will <u>increase</u>. (false, decrease)
- 4- Edmond Becquerel is the first person who discovered the photovoltaic effect. (True)
- 5- Making coffee uses <u>less</u> energy than one hour of laptop use. (false, more)
- 6- The major principles of MPPT is to extract the maximum available power from PV module by making them operate at the most efficient voltage (MPP). (True)
- 7- The voltage at which PV module can produce maximum power is called <u>open circuit voltage</u>.
 (false, (maximum power point) or (peak power voltage))
- 8- For stand-alone systems, the inverter must be large enough to handle the total amount of Watts you will be using at one time. (True)
- 9- The maximum theoretical efficiencies of solar sales could be around <u>98%</u>. (false, 48%)
- 10-First solar cell was invented by Charles Fritts. (True)
- 11-Normally, PV module works better at hot temperature. (false, cold)
- 12-The input rating of the inverter should never be lower than the total watt of appliances. (True)
- 13-The fill factor for the following module's characteristics: $V_{MPP}=34.6V$, $I_{MPP}=4.77A$, $I_{sc}=5.46A$, $V_{OC}=43.1V$ is about <u>90%</u>. (false, 70%)
- 14-Shading of 10% of the surface area of a string may cause more than a 30% reduction in output. (True)
- 15-Blocking diodes are used to mitigate shading. (True)

<u>Q.</u>2

[10 marks]

a) Consider a 100-cm² photovoltaic cell with reverse saturation current $I_0 = 10^{-12}$ A/cm². In full sun, it produces a short-circuit current of 40 mA/cm² at 25°C. Find the open-circuit voltage at full sun and again for 50% sunlight. Plot the results. (4 marks)

Solution:

The reverse saturation current I_0 is $10^{-12} \text{ A/cm}^2 \times 100 \text{ cm}^2 = 1 \times 10^{-10} \text{ A}$.

At full sun I_{SC} is 0.040 A/cm² × 100 cm² = 4.0 A.

From the open-circuit voltage equation

 $V_{OC} = 0.0257 \ln ((I_{SC}/I_0) + 1 = 0.0257 \ln ((4/10^{-10}) + 1) = 0.627 \text{ V}$

Since short-circuit current is proportional to solar intensity, at half sun $I_{SC} = 2$ A and the opencircuit voltage is

 $V_{OC} = 0.0257 \ln ((2/10^{-10}) + 1) = 0.610 \text{ V}$

b) 72-cell PV module has parallel resistance of 5.5 Ω per cell. In full sun, the output voltage is 34.6 V and the current is 4.77 A. If one cell is shaded and the current somehow stays the same. Determine: (i) the new module output voltage and power. (ii) the voltage drop across the shaded cell. (iii) the dissipated power in the shaded cell. (*iii*)

Solution:

a) The drop-in module voltage will be

 $\Delta V = (V/n) + IR_P = (34.6 \ / \ 72) + (4.77 \times 5.5) = 26.716 \ V$

The new output voltage will be 34.6 - 26.716 = 7.884 V.

Power delivered by the module with one cell shaded would be

 $P_{\text{module}} = VI = 7.884 \text{ V} \times 4.77 \text{ A} = 37.6088 \text{ W}$

For comparison, in full sun the module was producing 165 W.

b) All of that 4.77 A of current goes through the parallel plus series resistance (0.005) of the shaded cell, so the drop across the shaded cell will be

 $V_c = I (R_P + R_S) = 4.77 \times (5.5 + 0.005) = 26.259 V$

(normally a cell in the sun will add about 0.5 V to the module; this shaded cell subtracts over 26.259 V from the module).

c. The power dissipated in the shaded cell is voltage drop times current, which is $P = V_c I = 26.259 \text{ V} \times 4.77 \text{ A} = 125.255 \text{ W}$

All that power dissipated in the shaded cell is converted to heat, which can cause a local hot spot that may permanently damage the plastic laminates enclosing the cell.

<u>Q.</u>3

[15 marks]

a) Discuss in detail the MPPT systems of PV arrays and explain two commonly used techniques. (5 marks)

MPPT Techniques

- 1. Fractional open-circuit voltage.
- 2. Fractional short-circuit current.
- 3. Perturb and observe.
- 4. Incremental conductance

Fractional open-circuit voltage (FOCV)

- Fractional open-circuit voltage method sets the voltage value at the MPP equal to some fixed fraction of the measured open-circuit voltage.
- □ As the PV cells keep operating over longer periods, their open-circuit voltages are reduced and so are the values used for MPPT.
- □ Implementation of this method is simple.
- □ Its tracking efficiency is relatively low.
- $\Box \ V_{MPP} \approx K \ V_{OC}$

(K is the factor has been reported to be between 0.71 and 0.78)

Fractional Short-Circuit Current (FSCC)

- □ FSCC is an unsophisticated but a swift technique of tracking the MPP.
- □ To track the power, this MPPT technique requires the value of SCC by isolating the PV array.
- \Box The MPPT calculated using this technique is based on this equation ($I_{mpp} \approx K I_{SC}$) which is an approximation, hence this method does not operate on true MPPT.

(K is not constant. It's found to be between 0.78 and 0.92)

- □ This method is suitable to be implemented by using either the analog or the digital mode.
- □ The basic outline of this technique follows that the current at MPP (I_{mpp}) is closely located near the short circuit current Isc.
- $\Box\,$ Therefore, the operating point can be reached by multiplying Isc by the factor k .
- □ The constant "k" can be easily calculated from the specifications of the PV module and it is always less than 1.
- \Box The constant k is a fixed value and therefore, can be used as a fixed entity in the algorithm.
- □ The accuracy of the method and tracking efficiency depends on the accuracy of K and periodic measurement of short circuit current.

Perturb and observe (P&O)

- □ Perturb and observe techniques, essentially, an application of the hill-climbing method.
- □ If an adjustment that increases the voltage raises the PV power output, then the voltage needs to be increased until the voltage increment no longer raises the power output.
- □ If the voltage increment lowers the PV power output, then in the next voltage adjustment reverse the sign of the disturbance.

Incremental conductance (IC)

Incremental Conductance MPPT

b) Secondary school plans to get 25% of its electricity using photovoltaic array system on top of buildings where it is sunny. The total electrical load is 100 kW. The electrical characteristics of solar modules are: cell size: 12.55×12.55 cm, number of cells: 72, typical power: 150 Wp, minimum power: 145 W_p, voltage at typical power: 33.8 V, current at typical power: 4.45 A, short circuit current: 4.65 A, open circuit voltage: 43 V, module efficiency: 16.4 %, maximum circuit voltage: 1000 V. (i) Design the photovoltaic array system including (modules and inverter sizing). (ii) Design battery system for 2 hours daily. (iii) Estimate the required area for installing this PV system.

Step (1): Determine power consumption demands

Total load use = 100 kW * 25 % * 8 hours = 200 kWh/day Total PV panels energy required = 200 * 1.3 = 260 kWh/day

Step (2): Size the PV panel

Total W_P of PV panel capacity needed = (260 kWh/day) / (8 hours/day) = 32.5 kW_p Number of PV panels needed = 32.5 kW_p / 150 W_p = 217 modules

Step (3): Inverter sizing

For safety, the inverter should be considered 25-30% bigger size. The inverter size should be about 32 kW or greater.

Step (4): Battery Sizing for 4 hours

Total load use = 200 kWh/day Nominal battery voltage = 12 V Battery capacity = (200 kWh/day) / (0.85*0.6*12) = 32.68 kAh/day

Total Ah required for 2 hours per day = (32.68 kAh/day) * (2 hours / 8 hours per day) = 8.17 kAhSo the battery should be rated 12 V 66 kAh for 2 hours

Step (5): Required area for installing this PV system

Area of one module = $(12.55 \text{ cm} \times 12.55 \text{ cm}) * 72 = 1.134 \text{ m}^2$ Required area by 217 modules = $1.134 \text{ m}^2 * 217 = 246.078 \text{ m}^2$ Actual required area = $246.078 \text{ m}^2 * 1.25 = 307.6 \text{ m}^2$

With our best wishes