Question 3

a) For what values of x is the function $\mathrm{f}(\mathrm{x})=\left(\frac{\mathrm{e}^{\sin \mathrm{x}}}{4-\sqrt{\mathrm{x}^{2}-9}}\right)$ continuous?.
b) Use the limit definition to compute the first derivative for $\mathrm{f}(\mathrm{x})=5 \mathrm{x}^{2}-3 \mathrm{x}+7$.
c) Find the first derivative for the following functions
i) $y(x)=\left(3 x^{2}+1\right)^{1 / x}+\frac{[\ell n x]^{x}}{2^{3 x^{5}-1}}, \quad g(x)=\frac{x \csc x}{3-\csc x}+x^{2} \sec ^{2}(\pi x)$

Question 4

a) Evaluate the following limits
i) $\lim _{x \rightarrow 0} \frac{3^{x}-2^{x}}{x^{2}-x}$,
ii) $\lim _{x \rightarrow 0^{+}}(\tan x)^{x^{2}}$
b) Expand $f(x)=f(x)=x^{2} \cos x$ using Taylor Maclaurin series
c) If the sum of 2 numbers is k, find the minimum sum of their squares
d) Evaluate i) $\int\left(\frac{1+\ln x}{5+x \ln x}\right) d x$,
ii) $\int \frac{1}{\mathrm{x}^{3}}\left(7+\frac{5}{\mathrm{x}}\right)^{-3} \mathrm{dx}$

Model answer

Q3- a) For the function $f(x)$ to be defined $4-\sqrt{x^{2}-9} \neq 0$, therefore $f(x)$ is continuous at $x \leq-3$, or $x \geq 3$ except at $x=-5$ or $x=-5$
b) $\mathrm{f}^{\prime}(\mathrm{x})=\lim _{\Delta \mathrm{x} \rightarrow 0} \frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})-\mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}$
$=\lim _{\Delta x \rightarrow 0} \frac{\left[5(\mathrm{x}+\Delta \mathrm{x})^{2}-3(\mathrm{x}+\Delta \mathrm{x})+7\right]-\left[5 \mathrm{x}^{2}-3 \mathrm{x}+7\right]}{\Delta \mathrm{x}}$
$=\lim _{\Delta x \rightarrow 0} \frac{5\left[\left(2 x \Delta x+(\Delta x)^{2}\right]-3(\Delta x)\right.}{\Delta x}=10 x-3$
c-i) $y(x)=\left(3 x^{2}+1\right)^{1 / x}+\frac{[\ell n x]^{x}}{2^{3 x^{5}-1}} \Rightarrow y^{\prime}(x)=\left(3 x^{2}+1\right)^{1 / x}\left[\frac{-\ell n\left(3 x^{2}+1\right)}{x^{2}}+\frac{6}{\left(3 x^{2}+1\right)}\right]$
$+\frac{[\ell \mathrm{nx}]^{\mathrm{x}}\left[\ell \mathrm{n}(\ell \mathrm{nx})+\mathrm{x}\left(\frac{1 / \mathrm{x}}{\ln \mathrm{x}}\right)\right]\left[2^{3 \mathrm{x}^{5}-1}\right]-[\ell \mathrm{nx}]^{\mathrm{x}}\left[15 \mathrm{x}^{4}\right]\left[2^{3 \mathrm{x}^{5}-1}\right] \ell \operatorname{n} 2}{\left[2^{3 x^{5}-1}\right]^{2}}$
ii) $g(x)=x^{2} \sec ^{2}(\pi x)+\frac{x \csc x}{3-\csc x} \Rightarrow g^{\prime}(x)=2 x^{2} \pi\left[\sec ^{2}(\pi x) \tan (\pi x)\right]+2 x \sec ^{2}(\pi x)+$ $\frac{[-x \csc x \cot x+\csc x][3-\csc x]-[x \csc x][\csc x \cot x]}{(3-\csc x)^{2}}$

Q4-a-i) $\lim _{x \rightarrow 0} \frac{3^{x}-2^{x}}{x^{2}-x}=\frac{0}{0}=\lim _{x \rightarrow 0} \frac{3^{x} \ell \operatorname{n} 3-2^{x} \ell \operatorname{n} 2}{2 x-1}=\ell \operatorname{n} 2-\ell \operatorname{n} 3$
ii) This limit of the indeterminate form 0^{0}. Let $y=(\tan x)^{x^{2}} \Rightarrow \ell n y=x^{2} \ell n(\tan x)$ and we have to evaluate $\lim _{x \rightarrow 0^{+}} \ell n y=\lim _{x \rightarrow 0^{+}} x^{2} \ell n(\tan x)$.

This intermediate form is $0 \bullet \infty$ and so rewrite the above limit such that $\lim _{x \rightarrow 0^{+}} x^{2} \ell n(\tan x)=\lim _{x \rightarrow 0^{+}} \frac{\ell n(\tan x)}{1 / x^{2}}=\frac{-\infty}{\infty}$, then L'Hospital's rule can be used to
evaluate this limit $\lim _{x \rightarrow 0^{+}} \frac{\ell n(\tan x)}{1 / x^{2}}=-\lim _{x \rightarrow 0^{+}} \frac{x^{3} \sec ^{2} x}{2 \tan x}=\frac{0}{0}$
$=-\lim _{x \rightarrow 0^{+}} \frac{3 x^{2} \sec ^{2} x+2 x^{3} \sec ^{2} x \tan x}{2 \sec ^{2} x}=0$.

Therefore $\lim _{x \rightarrow 0^{+}}(\tan x)^{x^{2}}=\lim _{x \rightarrow 0^{+}} e^{\ell n \mathrm{y}}=\mathrm{e}^{\lim _{\mathrm{x} \rightarrow 0^{+}} \ell \mathrm{ny}}=\mathrm{e}^{0}=1$
b) Let $g(x)=\cos x \Rightarrow g^{\prime}(x)=-\sin x, g^{\prime}(x)=-\cos x, g^{\prime}{ }^{\prime}(x)=\sin x, \ldots$, therefore
$g(0)=1, g^{\prime}(0)=0, g^{\prime}(0)=-1, \mathrm{~g}^{\prime}{ }^{\prime}(0)=0, \ldots \ldots$
Substitute in above equation, thus $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots$
After we expand $\cos x$, then multiply by x^{2}, we get $x^{2} \cos x=x^{2}-\frac{x^{4}}{2!}+\frac{x^{6}}{4!}-\ldots$
c) Let the sum of the two numbers is expressed by $x+y=k$, therefore the sum of the two squares is expressed by $S=x^{2}+y^{2}$. To get the minimum sum of their squares, $\frac{\mathrm{dS}}{\mathrm{dx}}=0 \Rightarrow 2 \mathrm{x}-2(\mathrm{k}-\mathrm{x})=0 \Rightarrow \mathrm{x}=\frac{\mathrm{k}}{2}$ and $\mathrm{y}=\frac{\mathrm{k}}{2} \Rightarrow \frac{\mathrm{~d}^{2} \mathrm{~S}}{\mathrm{dx}^{2}}=4$, hence the minimum sum of their squares $S=x^{2}+y^{2}=\frac{k^{2}}{2}$.
d) $) \int\left(\frac{1+\ln x}{5+x \ln x}\right) d x=\ln (5+x \ln x)+c$
ii) $\int \frac{1}{\mathrm{x}^{3}}\left(7+\frac{5}{\mathrm{x}}\right)^{-3} \mathrm{dx}=\int\left[\mathrm{x}\left[7+\frac{5}{\mathrm{x}}\right]\right]^{-3} \mathrm{dx}=\frac{1}{7} \int[7 \mathrm{x}+5]^{-3}(7) \mathrm{dx}=-\frac{1}{14[7 \mathrm{x}+5]^{2}}+\mathrm{c}$

