Benha University
Faculty of Engineering- Shoubra
Credit hour Program
Final Examination

- Answer all the following questions
- Illustrate your answers with sketches when necessary.
- The Exam. Consists of one Page

1) In a factory we have four machines producing 1000, 1200, 1800, 2000 items per day with defects $1 \%, 5 \%, 5 \%, 1 \%$ respectively, find:
i) The probability of selecting a defective item.
ii) The probability that this defective item is produced by third machine.
2) If a r.v. X takes the values $1,2,3,4$ such that $2 \mathrm{P}(\mathrm{X}=1)=5 \mathrm{P}(\mathrm{X}=2)$ $=P(X=3)=3 P(X=4)$. Find the probability distribution of X, also find mean and variance.
3) $f(x)=\left\{\begin{array}{lc}c\left(1-x^{2}\right) & -1<x<1 \\ 0 & \text { otherwise }\end{array}\right.$, find c, \quad median, $E|X| \quad$ and $p(-1 / 2<x<1 / 3)$.
4) Find the constants of the curve $y(x)=\frac{1}{a+b x}$ that fit the following data: $(-1,2),(3,4),(6,9)$.

Dr. eng. Khaled El Naggar

Model answer

Answer of Question 1

i) Let the four machines are A, B, C, D respectively such that $\mathrm{P}(\mathrm{A})=1000 / 6000=1 / 6$, $\mathrm{P}(\mathrm{B})=1200 / 6000=1 / 5, \mathrm{P}(\mathrm{C})=1800 / 6000=3 / 10, \mathrm{P}(\mathrm{D})=2000 / 6000=1 / 3$, $\mathrm{P}(\mathrm{d} / \mathrm{A})=0.01, \mathrm{P}(\mathrm{d} / \mathrm{B})=0.05, \mathrm{P}(\mathrm{d} / \mathrm{C})=0.05, \mathrm{P}(\mathrm{d} / \mathrm{D})=0.01$
$P(d)=P(d / A) P(A)+P(d / B) P(B)+P(d / C) P(C)+P(d / D) P(D)=0.03$
ii) The probability that this defective item is produced by third machine $\mathrm{P}(\mathrm{C} / \mathrm{d})=$ $\frac{\mathrm{P}(\mathrm{d} / \mathrm{C}) \mathrm{P}(\mathrm{C})}{\mathrm{P}(\mathrm{d})}=\frac{(0.05)(0.3)}{0.03}=0.5$.

Answer of Question 2

Let $2 \mathrm{P}(\mathrm{X}=1)=3 \mathrm{P}(\mathrm{X}=2)=\mathrm{P}(\mathrm{X}=3)=5 \mathrm{P}(\mathrm{X}=4)=30 \mathrm{P}$, therefore $\mathrm{P}(\mathrm{X}=1)=15 \mathrm{P}$, $\mathrm{P}(\mathrm{X}=2)=10 \mathrm{P}, \mathrm{P}(\mathrm{X}=3)=30 \mathrm{P}, \mathrm{P}(\mathrm{X}=4)=6 \mathrm{P}$, but $\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)+\mathrm{P}(\mathrm{X}=3)+$ $\mathrm{P}(\mathrm{X}=4)=1$, thus $\mathrm{P}=1 / 61$

X	1	2	3	4
fX$)$	$15 / 61$	$10 / 61$	$30 / 61$	$6 / 61$

$\mathrm{E}(\mathrm{X})=(1 / 61)[15+20+90+24]=149 / 61$
$\mathrm{E}\left(\mathrm{X}^{2}\right)=(1 / 61)[15+40+270+96]=421 / 61$
$\operatorname{Var}(X)=(421 / 61)-(149 / 61)^{2}$

Answer of Question 3

$c \int_{-1}^{1}\left(1-x^{2}\right) d x=\left.1 \Rightarrow 2 c\left[x-\frac{x^{3}}{3}\right]\right|_{0} ^{1}=1 \Rightarrow c=3 / 4$
$E|X|=\frac{3}{4}\left[\int_{-1}^{0}-x\left(1-x^{2}\right) d x+\int_{0}^{1} x\left(1-x^{2}\right) d x\right]$
$\mathrm{p}(-1 / 2<\mathrm{x}<1 / 3)=\frac{3}{4} \int_{-1 / 2}^{1 / 3}\left(1-\mathrm{x}^{2}\right) \mathrm{dx}=\left.\frac{3}{4}\left[\mathrm{x}-\frac{\mathrm{x}^{3}}{3}\right]\right|_{-1 / 2} ^{1 / 3}=\frac{3}{4}\left[\frac{1}{3}-\frac{1}{81}+\frac{1}{2}-\frac{1}{24}\right]$

To get the median μ_{x}
$\frac{3}{4} \int_{-1}^{\mu_{x}}\left(1-x^{2}\right) d x=\left.0.5 \Rightarrow \frac{3}{4}\left[x-\frac{x^{3}}{3}\right]\right|_{-1} ^{\mu_{x}}=\frac{3}{4}\left[\mu_{x}-\frac{\mu_{x}^{3}}{3}+1-\frac{1}{3}\right]=0.5$

Answer of Question 4

If we consider the function $1 / y=a+b x$ such that
$\sum_{i=1}^{N} 1 / y_{i}=a N+b \sum_{i=1}^{N} x_{i}, \quad \sum_{i=1}^{N} x_{i} / y_{i}=a \sum_{i=1}^{N} x_{i}+b \sum_{i=1}^{N} x_{i}^{2}, \quad$ where $N=3$,
$\sum_{i=1}^{3} 1 / y_{i}=0.86, \quad \sum_{i=1}^{3} x_{i}=8, \quad \sum_{i=1}^{3} x_{i}^{2}=46, \sum_{i=1}^{3} x_{i} / y_{i}=0.92, \quad$ therefore:
$0.86=3 a+8 b, \quad 0.92=8 a+46 b$, from which we get a and b.

