Benha University
Faculty of Engineering (Shoubra) Engineering Mathematics and Physics Department

Probability and random processes
Code: ENG 506 Jan. 2019
Time allowed: $\mathbf{3}$ hours Scores : 60 marks

Question 1

a- A card is drawn at random from a standard deck of playing cards. What is the Prob. that the card is less than a 7 given: A) The card is not a 2, B) The card is a heart, C) The card is a 3 or 4
b- Suppose that a number of inquiries arriving at a certain interactive system with arrival rate 12 inquiries per minute. Find the probability of at least 2 inquiries arriving in 3 minute interval.
c- When Justin is goal-keeper, Shaunie manages to score an average of once for every 10 shots he takes. If Shaunie takes 12 shots, find the following probability that he scores at most twice.
d- If $f(x)=c x^{2} e^{-2 x}$ is P.d.f., $x>0$, find c, mean and variance.

Question 2

a) A fair coin is tossed 3 times, X is the N° of heads that come up on the first 2 tosses and Y is the N^{0} of heads that come up on tosses 2,3 . Construct the joint distribution and find marginal of X and Y , also find the variance of $\mathrm{X}, \mathrm{Y} \& \mathrm{P}[(\mathrm{X}+\mathrm{Y})>1, \mathrm{X}>\mathrm{Y}]$.
b) $f(x)=\left\{\begin{array}{ll}c\left(1-x^{2}\right) & -1<x<1 \\ 0 & \text { otherwise }\end{array}\right.$, find c, median, $E|X|$ and $p(-1 / 2<x<1 / 3)$.

Question 3

a) If $f(x)=c e^{-2 x}$ is P.d.f., find $E(x)$ and standard deviation
b) Given a Binomial distribution with variance $=3$ and mean $=6$, find the number of trials.

Model answer

Answer of question 1

$\mathrm{a}-\mathrm{D}=\{$ card is less than a 7$\}=\{24$ cards $\}$
$\mathrm{A}=\{$ card is not a 2$\}=\{48$ cards $\}$, therefore $\mathrm{P}(\mathrm{D} / \mathrm{A})=20 / 48=5 / 12$
$B=\{$ card is a heart $\}=\{13$ cards $\}$, therefore $P(D / B)=6 / 13$,
$C=\{$ card is a 3 or 4$\}=\{8$ cards $\}$, therefore $P(D / C)=1$.
b- X: The number of inquiries arriving at a certain interactive such that $\lambda=12(3)=36$, thus
$P(X \geq 2)=1-P(X \leq 1)=1-\sum_{x=0}^{1} \frac{e^{-\lambda} \lambda^{x}}{x!}=1-\sum_{x=0}^{1} \frac{e^{-36} 36^{x}}{x!}=1-e^{-36}-36 e^{-36}$
c- By using Binomial distribution, $\mathrm{n}=12, \mathrm{p}=0.1$, therefore
$\mathrm{p}(\mathrm{x} \leq 2)=\sum_{\mathrm{x}=0}^{2} 12 \mathrm{c}_{\mathrm{x}}(0.1)^{\mathrm{x}}(0.9)^{12-\mathrm{x}}$
d- Since $f(X)=4 x^{2} e^{-2 x}$ is gamma distribution with $\alpha=3 \& \beta=2$, thus $E(X)=\alpha / \beta=3 / 2$ and variance is $\alpha / \beta^{2}=3 / 4$

Answer of question 2

a)

Y	0	1	2	$\mathrm{f}_{1}(\mathrm{x})$
0	$1 / 8$	$1 / 8$	0	$2 / 8$
1	$1 / 8$	$2 / 8$	$1 / 8$	$4 / 8$
2	0	$1 / 8$	1	$2 / 8$
$\mathrm{f}_{2}(\mathrm{y})$	$2 / 8$	$4 / 8$	$2 / 8$	1

$\mathrm{E}(\mathrm{X})=0(2 / 8)+1(4 / 8)+2(2 / 8)=1, \mathrm{E}(\mathrm{Y})=0(2 / 8)+1(4 / 8)+2(2 / 8)=1, \mathrm{E}\left(\mathrm{X}^{2}\right)=1(4 / 8)+$ $4(2 / 8)=3 / 2, \mathrm{E}\left(\mathrm{Y}^{2}\right)=1(4 / 8)+4(2 / 8)=3 / 2, \operatorname{Var}(\mathrm{X})=\operatorname{Var}(\mathrm{Y})=1 / 2$.
$\mathrm{P}[(\mathrm{X}+\mathrm{Y})>1, \mathrm{X}>\mathrm{Y}]=\mathrm{P}(2,0)+\mathrm{P}(2,1)=1 / 8$
b) $c \int_{-1}^{1}\left(1-x^{2}\right) d x=\left.1 \Rightarrow 2 c\left[x-\frac{x^{3}}{3}\right]\right|_{0} ^{1}=1 \Rightarrow c=3 / 4$
$E|X|=\frac{3}{4}\left[\int_{-1}^{0}-x\left(1-x^{2}\right) d x+\int_{0}^{1} x\left(1-x^{2}\right) d x\right]$
$p(-1 / 2<x<1 / 3)=\frac{3}{4} \int_{-1 / 2}^{1 / 3}\left(1-x^{2}\right) d x=\left.\frac{3}{4}\left[x-\frac{x^{3}}{3}\right]\right|_{-1 / 2} ^{1 / 3}=\frac{3}{4}\left[\frac{1}{3}-\frac{1}{81}+\frac{1}{2}-\frac{1}{24}\right]$

To get the median μ_{x}

$$
\frac{3}{4} \int_{-1}^{\mu_{\mathrm{x}}}\left(1-\mathrm{x}^{2}\right) \mathrm{dx}=\left.0.5 \Rightarrow \frac{3}{4}\left[\mathrm{x}-\frac{\mathrm{x}^{3}}{3}\right]\right|_{-1} ^{\mu_{\mathrm{x}}}=\frac{3}{4}\left[\mu_{\mathrm{x}}-\frac{\mu_{\mathrm{x}}^{3}}{3}+1-\frac{1}{3}\right]=0.5
$$

Answer of Question 3

a) $f(x)$ is exponential distribution such that $f(x, \lambda)=\left\{\begin{array}{ll}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{array}\right.$, thus $c=2=\lambda$ and the mean of X is given by $E(X)=\frac{1}{\lambda}=0.5$ and the variance of X is given by $\operatorname{Var}(X)=\frac{1}{\lambda^{2}}=0.25$
b) Since for binomial distribution the expected value $=\mathrm{np}=6$ and the variance $=\mathrm{npq}=3$ and by dividing variance / expected value $=\mathrm{q}=0.5$, therefore $\mathrm{p}=1-\mathrm{q}=0.5$.
Hence the N^{o} of trials $=\mathrm{n}=12$

1. Overall aims of course

By the end of the course the students will be able to:

1. To teach the students the essential information about Multi dimensional random variable.
2. To teach the students characteristic functions :Limit theorem for characteristic functions
3. To teach the students converse limit theorem - Stochastic process
4. To teach the students Functions of random variables
5. To teach the students distribution function technique, transformation technique and moment generating function technique
6. To teach the students Markow chains, reliability theory and measures of reliability.

2. Intended Learning outcomes of Course (ILOs)

Knowledge and Understanding:

2.1.5 List the principles and fundamentals of probability and statistics
2.1.6 Define the basics and the ethics of of random variables and probability distributions. [Q2, Q3]

Intellectual Skills

2.2.1 Analyze and assess information of random variables

Professional and Practical Skills

2.3.2 Write and evaluate professional reports in probability and statistics and its
2.3.3 Assess methods and current tools for treating, solving and analyzing real problems. [Q2]

a. General and Transferable Skills

2.4.2 Use information technology to develop modeling, and analyzing real problems
2.4.8 Use self learning and continuous research for recent topics related to this subject

