Benha University Faculty of Engineering- Shoubra Electrical Engineering Department Third Year Computers

Final Exam-2 ${ }^{\text {nd }}$ Semester

- No. of questions: 5
- Total marks: 80
- Examiner: Dr. Ibtesam Omer

Question 1 [20 Marks]
(a)Given $h_{i e}=2.4 \mathrm{k} \Omega, h_{\mathrm{fe}}=100, h_{\mathrm{re}}=4 \times 10^{-4}$ and $h_{\mathrm{oe}}=25$ $\mu \mathrm{S}$, sketch the:

Ans:
(i) Common-emitter hybrid equivalent model.

$$
\begin{aligned}
& \mathbf{h}_{\mathrm{he}_{\mathrm{e}}}=\beta \mathrm{r}_{\mathrm{e}}=2.4 \mathrm{k} \Omega \\
& \mathbf{h}_{\mathrm{fe}}=\beta=100 \\
& \mathbf{h}_{\mathrm{re}}=\mathbf{4} \times 10^{-4} \\
& \mathbf{h}_{\mathrm{oe}}=\mathbf{2 5} \boldsymbol{\mu S}
\end{aligned}
$$

(ii) Common-emitter $\mathbf{r}_{\mathrm{e}}$ equivalent model.

$$
\begin{aligned}
& r_{e}=2.4 \mathrm{k} \Omega / 100=24 \Omega \\
& r_{0}=1 / h_{\mathrm{oe}}=1 / 25 \mu \mathrm{~S}=40 \mathrm{k} \Omega
\end{aligned}
$$

(b)For the common-base configuration of Figure 1, the emitter current is 3.2 mA and $\alpha$ is 0.99 .
If the applied voltage is 48 mV and the load is $2.2 \mathrm{k} \Omega$ Determine the following:
(a) $\mathrm{r}_{\mathrm{e}}$
(b) $\mathbf{Z}_{\mathbf{i}}$
(c) $\mathbf{I}_{\mathrm{c}}$
(d) $\mathrm{V}_{0}$
(e) $\mathrm{A}_{v}$
(f) $\mathbf{I}_{b}$


Figure (1) Common-base $r_{e}$ equivalent circuit

## Ans:

$$
\begin{aligned}
& \text { (as } r_{e}=\frac{V_{i}}{I_{i}}=\frac{48 m V}{3.2 m A}=15 \Omega \\
& \text { (b) } Z_{i}=r_{e}=15 \Omega \\
& \text { (c) } I_{c}=\alpha I_{e}=(0.99)(3.2 \mathrm{~mA})=3.168 \mathrm{~mA}^{A} \\
& \text { (d) } V_{0}=I_{c} R_{2}=(3.168 \mathrm{~mA})(2.2 \mathrm{ke}) \\
& \text { (e) } A_{G}=\frac{6.97 v}{V_{0}}=\frac{6.97 v}{48 \mathrm{mv}}=145.21 \\
& \text { (f) } I_{b}=(1-\alpha) I_{e}=(1-0.99) I_{e}=(0.01)\langle 3.2 \mathrm{~mA}) \\
& =32 \mu \mathrm{~A}
\end{aligned}
$$

## Question 2 [14 Marks]

(a)For the network of Figure2 at $\mathbf{r}_{\mathbf{0}}=\infty \mathrm{K} \Omega$ :
(a) Determine $\mathrm{r}_{\mathrm{e}}$.
(b) Find $Z_{i}$ and $Z_{i}$.
(c) Calculate $A_{i}$ and $A_{v}$.

Ans:


```
(a) \(\quad I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+(\beta+1) R E}\)
\(=\frac{22 V-0.7 V}{330 k \Omega+(81)(1.2 k e+0.47 k s)}=\frac{21.3 V}{465.27 k \Omega}\)
\(=45.78 \mu \mathrm{~A}\)
\(I_{E}=(\beta+1) I_{B}=(81)(45.78 \mu A)=3.7 \mathrm{~mm}\)
    \(r_{e}=\frac{26 m V}{I_{E}}=\frac{26 m V}{3.71 m A}=752\)
```

(b) $r_{0}<10\left(R_{C}+R_{E}\right)$

$$
\left.\begin{array}{rl}
\therefore Z_{b} & =\beta r_{e}+\left[\frac{(\beta+1)+R_{c /} / r_{0}}{1+\left(R_{c}+R_{E}\right) / r_{0}}\right] R_{E} \\
& =(80 \times 7 S 2)+\left[\frac{(81)+5.6 k s / 40 k}{1+6.8 k s / 240 k}\right.
\end{array}\right] 1.2 k \Omega
$$

$$
Z_{i}=R_{B} \| Z_{b}=330 \mathrm{ks} 1183.78 k s=66.82 \mathrm{ks}
$$

$$
A_{v}=\frac{-\frac{\beta R_{C}}{Z_{b}}\left(1+\frac{r_{e}}{r_{0}}\right)+\frac{R_{c}}{r_{0}}}{1+\frac{R_{C}}{r_{0}}}
$$

$$
\frac{-\left(\frac{80)(5.6 k 52)^{20}\left(1+\frac{752}{40 k 52}\right)+\frac{5.6 k 5}{40 k s}}{1+5.6 k 5 / 40 k 5}\right.}{\frac{1+78 k 5}{1+5}}
$$

$$
=\frac{-(5.35)+0.14}{1+0.14}
$$

$$
=-4.57
$$

(c) $A_{i}=-A_{v} \frac{Z_{i}}{R_{c}}=-(-4.57)(66.82 k s) / 5.6 k s$ $=54.53$
(b)What is the expected amplification of a BJT transistor amplifier if the dc supply is set to zero volts? Ans:

If the dc supply is set to zero volts the amplification will be zero.

## Question 3 [18 Marks]

(a)Determine the voltage gain the power gain, and the efficiency of the class A power amplifier in figure 3. Assume $\boldsymbol{\beta}_{\mathrm{ac}(\mathrm{Q} 1)}=\boldsymbol{\beta}_{\mathrm{ac}(\mathrm{Q} 2)}=200$ and $\boldsymbol{\beta}_{\mathrm{ac}(\mathrm{Q} 3)}=50$. Express the power gain as a decibel power gain.


Figure (3) Class A Power Amplifier.
Ans:
$\mathbf{A}_{\mathbf{v}(t o t)}=\mathbf{A}_{\mathbf{v} 1} * \mathbf{A}_{\mathbf{v} 2} * \mathbf{A}_{\mathbf{v} 3}$
$\mathbf{A}_{\mathbf{v} 2}, \mathbf{A}_{v 3}$ is emitter follower so $\mathbf{A}_{v 2}=\mathbf{A}_{v 3}=1$

## After Ac Analysis

From common emitter configuration $\mathbf{A}_{\mathbf{v} 1}=\left(-\mathbf{R}_{\mathbf{c} 1}\right) /\left(\mathbf{R}_{\mathrm{E} 1}+\mathbf{r}_{\mathrm{e}(\mathrm{Q} 1)}\right)$

## First stage:

The ac collector resistance of the first stage is $R_{\mathrm{C}}$ in parallel with the input resistance to the second stage.

$$
\begin{aligned}
R_{c 1} & =R_{\mathrm{C}} \|\left[R_{3}\left\|R_{4}\right\| \beta_{a c(Q 2)} \beta_{a c(Q 3)}\left(R_{\mathrm{E} 3} \| R_{L}\right)\right] \\
& =1.0 \mathrm{k} \Omega \|[5.1 \mathrm{k} \Omega\|15 \mathrm{k} \Omega\|(200)(50)(16 \Omega \| 16 \Omega)] \\
& =1.0 \mathrm{k} \Omega\|(5.1 \mathrm{k} \Omega\|15 \mathrm{k} \Omega\| 80 \mathrm{k} \Omega)=1.0 \mathrm{k} \Omega\| 3.63 \mathrm{k} \Omega=784 \Omega
\end{aligned}
$$

The voltage gain of the first stage is the ac collector resistance, $R_{c 1}$, divided by the ac emitter resistance, which is the sum of $R_{E 1}+r_{e\left(Q_{1}\right)}^{\prime}$. The approximate value of $r_{e\left(Q_{1}\right)}^{\prime}$ is determined by first finding $I_{\mathrm{E}}$.

$$
\begin{aligned}
V_{\mathrm{B}} & =\left(\frac{R_{2} \|\left(\beta_{a c(Q 1)}\left(R_{\mathrm{E} 1}+R_{\mathrm{E} 2}\right)\right.}{R_{1}+R_{2} \|\left(\beta_{a c(Q)}\left(R_{\mathrm{E} 1}+R_{\mathrm{E} 2}\right)\right)}\right) V_{\mathrm{CC}} \\
& =\left(\frac{5.1 \mathrm{k} \Omega \| 200(377 \Omega)}{20 \mathrm{k} \Omega+5.1 \mathrm{k} \Omega \| 200(377 \Omega)}\right) 15 \mathrm{~V} \\
& =\left(\frac{4.78 \mathrm{k} \Omega}{20 \mathrm{k} \Omega+4.78 \mathrm{k} \Omega}\right) 15 \mathrm{~V}=2.89 \mathrm{~V} \\
I_{\mathrm{E}} & =\frac{V_{\mathrm{B}}-0.7 \mathrm{~V}}{R_{\mathrm{E} 1}+R_{\mathrm{E} 2}}=\frac{2.89 \mathrm{~V}-0.7 \mathrm{~V}}{377 \Omega}=5.81 \mathrm{~mA} \\
r_{e(Q 1)}^{\prime} & =\frac{25 \mathrm{mV}}{I_{\mathrm{E}}}=\frac{25 \mathrm{mV}}{5.81 \mathrm{~mA}}=4.3 \Omega
\end{aligned}
$$

The voltage gain of the first stage with the loading of the second stage taken into account

$$
A_{\nu 1}=-\frac{R_{c 1}}{R_{\mathrm{E} 1}+r_{e(Q 1)}^{\prime}}=-\frac{784 \Omega}{47 \Omega+4.3 \Omega}=-15.3
$$

The negative sign is for inversion.

$$
\begin{aligned}
\mathbf{R}_{\text {in (tot })} & =\mathbf{R} 1 / / R 2 / / \beta_{\text {ac }(\mathrm{Q} 1)}\left(\mathbf{r}_{\mathrm{e}(\mathrm{Q} 1)}+\mathrm{R}_{\mathrm{E} 1}\right) \\
& =20 \mathrm{k} \Omega / / 5.1 \mathrm{k} \Omega / / 200(47 \Omega+4.3 \Omega)=2.9 \mathrm{k} \Omega
\end{aligned}
$$

$\mathbf{A}_{\mathbf{v}(\text { tot })}=\mathbf{A}_{\mathbf{v} 1} * \mathbf{A}_{\mathbf{v} 2} * \mathbf{A}_{\mathbf{v} 3}=\mathbf{- 1 5 . 3}$
$A_{p}=\left(A_{v(t o t)}\right)^{2}\left(\mathbf{R}_{\text {in (tot) }} / R_{L}\right)=42,429$
$d B=10 \log A_{p}=10 \log 42,429=46.23 \mathrm{~dB}$
(b)List the capacitances that affect high frequency gain in BJT amplifier. Explain why the coupling capacitors do not have a significant effect on gain at sufficiently high signal frequencies.

## BIT: $C_{b e 9} C_{b c}$ and $C_{c e}$

## Question 4 [12 Marks]

For the network shown in figure 4:
(a) Determine the corner frequency.
(b) Determine the mathematical expression for the magnitude of the voltage gain.
(c) Determine the mathematical expression for the angle by which $V_{0}$ leads $V_{i}$.
(d) Sketch the frequency response of $\boldsymbol{\Theta}$.


Figure (4) R-C combination that will define cut off frequency
Ans:

$$
f_{1}=\frac{1}{2 \pi R C}
$$

a)
$X_{c}=1 / 2 \pi \mathrm{fC}=2 \mathrm{k} \Omega$
c= $7.96 \times 10^{-8}$ farad
$\mathrm{f}_{1}=1 / 2 \pi \mathrm{RC}=2 \mathrm{kHz}$
b)

If the gain equation is written as

$$
A_{v}=\frac{V_{o}}{V_{i}}=\frac{R}{R-j X_{C}}=\frac{1}{1-j\left(X_{C} / R\right)}=\frac{1}{1-j(1 / \omega C R)}=\frac{1}{1-j(1 / 2 \pi f C R)}
$$

and using the frequency defined above,

$$
A_{v}=\frac{1}{1-j\left(f_{1} / f\right)}
$$

In the magnitude and phase form,

$$
A_{v}=\frac{V_{o}}{V_{i}}=\underbrace{\frac{1}{\sqrt{1+\left(f_{v} / f\right)^{2}}}}_{\text {magnitude of } A_{v}} \underbrace{\tan ^{-1}\left(f_{1} / f\right)}_{\substack{\text { phase } \nless \text { by which } \\ V_{0} \text { leads } V_{i}}}
$$

c)

$$
\theta=\tan ^{-1} \frac{f_{1}}{f}
$$

d)

| $\mathrm{f}=100 \mathrm{~Hz}$ | $\Theta=87.13^{\circ}$ |
| :--- | ---: |
| $\mathrm{f}=1 \mathrm{kHz}$ | $\Theta=63.43^{\circ}$ |
| $\mathrm{f}=2 \mathrm{kHz}$ | $\Theta=\mathbf{4 5}^{\circ}$ |
| $\mathrm{f}=5 \mathrm{kHz}$ | $\Theta=21.8^{\circ}$ |
| $\mathrm{f}=10 \mathrm{kHz}$ | $\Theta=11.3^{\circ}$ |



## Question 5 [16 Marks]

For the BJT amplifier in figure 5:
(a)Determine the critical frequencies associated with the low frequency response.
(b)Which is the dominant critical frequency? Sketch the Bode Plot.


Ans:
(a)

Figure (5) Loaded BJT amplifier with capacitors that affect the low-frequency response

$$
\begin{aligned}
& R_{\mathrm{IN}(\text { basee) }}=\beta_{\mathrm{DC}} R_{\mathrm{E}}=12.5 \mathrm{k} \Omega \\
& V_{\mathrm{E}}=\left(\frac{R_{2} \| R_{\mathrm{IN}(\text { base })}}{R_{1}+R_{2} \| R_{\mathrm{IN}(\text { base })}}\right) 9 \mathrm{~V}-0.7 \mathrm{~V}=\left(\frac{4.7 \mathrm{k} \Omega \| 12.5 \mathrm{k} \Omega}{12 \mathrm{k} \Omega+4.7 \mathrm{k} \Omega \| 12.5 \mathrm{k} \Omega}\right) 9 \mathrm{~V}-0.7 \mathrm{~V}=1.3 \mathrm{~V} \\
& I_{\mathrm{E}}=\frac{V_{\mathrm{E}}}{R_{\mathrm{E}}}=\frac{1.3 \mathrm{~V}}{100 \Omega}=13 \mathrm{~mA} \\
& r_{e}^{\prime}=\frac{25 \mathrm{mV}}{13 \mathrm{~mA}}=1.92 \Omega \\
& R_{\text {in(basej }}=\beta_{\text {ace }} r_{e}^{\prime}=(125)(1.92 \Omega)=240 \Omega \\
& R_{\text {in }}=50 \Omega+R_{\text {in(base })}\left\|R_{1}\right\| R_{2}=50 \Omega+240 \Omega\|12 \mathrm{k} \Omega\| 4.7 \mathrm{k} \Omega=274 \Omega
\end{aligned}
$$

For the input network:
$f_{c}=\frac{1}{2 \pi R_{\text {in }} C_{1}}=\frac{1}{2 \pi(274 \Omega)(1 \mu \mathrm{~F})}=\mathbf{5 7 8} \mathbf{~ H z}$
For the output network:
$f_{c}=\frac{1}{2 \pi\left(R_{\mathrm{C}}+R_{L}\right) C_{3}}=\frac{1}{2 \pi(900 \Omega)(1 \mu \mathrm{~F})}=177 \mathrm{~Hz}$
For the bypass network:

$$
\begin{aligned}
& R_{\mathrm{TH}}=R_{1}\left\|R_{2}\right\| R_{s}=12 \mathrm{k} \Omega\|4.7 \mathrm{k} \Omega\| 50 \Omega \cong 49.3 \Omega \\
& f_{c}=\frac{1}{2 \pi\left(r_{e}^{\prime}+R_{\mathrm{TH}} / \beta_{\mathrm{DC}} \| R_{\mathrm{E}}\right) C_{2}}=\frac{1}{2 \pi(2.31 \Omega)(10 \mu \mathrm{~F})}=6.89 \mathrm{kHz} \\
& A_{v}=\frac{R_{\mathrm{C}} \| R_{L}}{r_{e}^{\prime}}=\frac{220 \Omega \| 680 \Omega}{1.92 \Omega}=86.6 \\
& A_{v}(\mathrm{~dB})=20 \log (86.6)=38.8 \mathrm{~dB}
\end{aligned}
$$

(b)The bypass network produces the dominant critical frequency. See the following figure


