Benha University Faculty of Engineering- Shoubra (Civil \quad)Engineering Department		Final term exam Date: $14^{\text {th }}$ of June 2014 Mathematics \& Statistics Code: EMP 151 Duration : 3 hours
Answer all the following questions	No. of questions :	4 Total Mark: 70 marks

Q1 Solve the differential equations

$\left(x^{3}+y^{3}\right) d x-3 x y^{2} d y=0 \quad y^{\prime}-3 y^{`}+2 y=2 x^{2}+e^{x}+x e^{x} \quad\left(D^{2}-6 D+13\right) y=8 e^{3 x} \cos 2 x$

Q2 Test for convergence
[15 marks]
$\sum_{n=1}^{\infty} \frac{5^{n}+7^{n}}{3^{n}+2^{n}}$

$$
\sum_{n=1}^{\infty} \frac{(5 n)^{n}}{(9 n+11)^{n}}
$$

$$
\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{\sqrt{n}}
$$

Q3 Answer the following
I) At Kennedy middle School, the probability that a student takes Technology and Spanish is 0.087 and the probability that a student takes Technology is $\mathbf{0 . 6 8}$. What is the probability that a student takes Spanish given that the student is taking Technology?
II) If a r.v. X takes the values $1,2,3,4$ such that $2 \mathrm{P}(\mathrm{X}=1)=5 \mathrm{P}(\mathrm{X}=2)=\mathrm{P}(\mathrm{X}=3)=3 \mathrm{P}(\mathrm{X}=4)$. Find the probability distribution of X, also find mean and variance.
III) Let X be a continuous r.v. with p.d.f. $f(x)=(1 / x)$ for $1<x<e$, find $E(\ln X), \operatorname{Var}(X)$, median, $\mathrm{P}(1.5>\mathrm{x}), \mathrm{P}(1.2<\mathrm{x})$.

Q4 Answer the following
I) Find the point on the plane $3 x+2 y+z=24$ that is nearest to the origin
II) Find envelope for the family of ellipses $\frac{x^{2}}{c^{2}}+\frac{y^{2}}{(1-c)^{2}}-1=0$

Dr. eng. Khaled EI Naggar

Model answer

Answer of question 1

$\left(x^{3}+y^{3}\right) d x-3 x y^{2} d y=0$ (solve)

Answer

It is homogeneous, thus put $y=v x \Rightarrow d y=v d x+x d v$
Thus $\left(1-2 v^{2}\right) d x-3 v^{2} x d v=0 \Rightarrow \frac{d x}{x}-\frac{3 v^{2}}{1-2 v^{3}} d v=0 \Rightarrow \ln x+\frac{1}{2} \ln \left(1-2 v^{3}\right)=c$
$y^{6}-3 y^{6}+2 y=2 x^{2}+e^{x}+x e^{x}$

Answer

$y(x)=y_{p}+y_{H}$, therefore $y_{H}=c_{1} e^{2 x}+c_{2} e^{x}$
$y_{p}=\frac{1}{D^{2}-3 D+2} 2 x^{2}+\frac{1}{D^{2}-3 D+2} e^{x}+\frac{1}{D^{2}-3 D+2} x e^{x}$
$y_{p}=\frac{1}{2\left[1+\frac{D^{2}-3 D}{2}\right]} 2 x^{2}+\frac{1}{(D-1)(D-2)} e^{x}+e^{x} \frac{1}{(D+1)^{2}-3(D+1)+2} x$
$y_{p}=\left[1-\left(\frac{D^{2}-3 D}{2}\right)+\left(\frac{D^{2}-3 D}{2}\right)^{2}+\ldots\right] x^{2}-\frac{1}{(D-1)} e^{x}+e^{x} \frac{1}{D^{2}-D} x$
$y_{p}=\left[1+\frac{7 D^{2}}{4}+\frac{3 D}{2}+\ldots\right] x^{2}-x e^{x}-\frac{e^{x}}{2}\left[1+D+D^{2}\right] x$
$y_{p}=7 / 2+4 x-2 x e^{x}-e^{x}-\frac{e^{x}}{2} x^{2}$
$\left(D^{2}-6 D+13\right) y=8 e^{3 x} \cos 2 x$

Answer

$$
\begin{aligned}
& y_{h}=e^{3 x}\left[c_{1} \cos 2 x+c_{2} \sin 2 x\right] \\
& y_{p}=\frac{1}{D^{2}-6 D+13} 8 e^{3 x} \cos 2 x=8 e^{3 x} \frac{1}{(D+3)^{2}-6(D+3)+13} \cos 2 x= \\
& 8 e^{3 x} \frac{1}{D^{2}+4} \cos 2 x=2 x e^{3 x} \sin 2 x
\end{aligned}
$$

Answer of question 2

$\sum_{n=1}^{\infty} \frac{5^{n}+7^{n}}{3^{n}+2^{n}}$ (Test for convergence)

Answer

By ratio test, we get that $\lim _{n \rightarrow \infty}\left(\frac{5^{n+1}+7^{n+1}}{3^{n+1}+2^{n+1}}\right)\left(\frac{3^{n}+2^{n}}{5^{n}+7^{n}}\right)=\lim _{n \rightarrow \infty} \frac{7^{n+1}}{3^{n+1}}\left[\frac{(5 / 7)^{n+1}+1}{1+(2 / 3)^{n+1}}\right]$ $\frac{3^{n}}{7^{n}}\left[\frac{3^{n}+2^{n}}{5^{n}+7^{n}}\right]=7 / 3>1$, therefore the series is divergent.

$$
\sum_{\mathrm{n}=1}^{\infty} \frac{(5 \mathrm{n})^{\mathrm{n}}}{(9 \mathrm{n}+11)^{\mathrm{n}}}(\text { Test for convergence })
$$

Answer

Since $\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{5 n}{9 n+11}\right)^{n}}=\lim _{n \rightarrow \infty}\left(\frac{5 n}{9 n+11}\right)=\frac{5}{9}<1$, therefore $\quad \sum_{n=1}^{\infty} \frac{(5 n)^{n}}{(9 n+11)^{n}} \quad$ is convergent
$\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{\sqrt{n}}$ (Test for convergence)

Answer

Let $U_{n}=\frac{1}{\sqrt{n}}, \lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0, U_{n+1}=\frac{1}{\sqrt{n+1}}$, hence $U_{n}>U_{n+1}$. By using integral test, we will get that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is divergent, so $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{\sqrt{n}}$ is called conditionally convergent.

Answer of question 3

I) $\mathrm{P}(\mathrm{T} \cap \mathrm{S})=0.087, \mathrm{P}(\mathrm{T})=0,68$, therefore $\mathrm{P}(\mathrm{S} / \mathrm{T})=\mathrm{P}(\mathrm{T} \cap \mathrm{S}) / \mathrm{P}(\mathrm{T})=0.087 / 0.68$
II) Let $2 \mathrm{P}(\mathrm{X}=1)=3 \mathrm{P}(\mathrm{X}=2)=\mathrm{P}(\mathrm{X}=3)=5 \mathrm{P}(\mathrm{X}=4)=30 \mathrm{P}$, therefore $\mathrm{P}(\mathrm{X}=1)=$ $15 \mathrm{P}, \mathrm{P}(\mathrm{X}=2)=10 \mathrm{P}, \mathrm{P}(\mathrm{X}=3)=30 \mathrm{P}, \mathrm{P}(\mathrm{X}=4)=6 \mathrm{P}$, but $\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)+$ $P(X=3)+P(X=4)=1$, thus $P=1 / 61$

X	1	2	3	4
fX$)$	$15 / 61$	$10 / 61$	$30 / 61$	$6 / 61$

$\mathrm{E}(\mathrm{X})=(1 / 61)[15+20+90+24]=149 / 61$
$\mathrm{E}\left(\mathrm{X}^{2}\right)=(1 / 61)[15+40+270+96]=421 / 61$
$\operatorname{Var}(\mathrm{X})=(421 / 61)-(149 / 61)^{2}$
III) $E(\operatorname{Ln} x)=\int_{1}^{e} \operatorname{Ln} x\left(\frac{1}{x}\right) d x=\frac{(\ln x)^{2}}{2}=\frac{1}{2} E(x)=\int_{1}^{e} x\left(\frac{1}{x}\right) d x=\int_{1}^{e} d x=e-1$
$\mathrm{E}\left(\mathrm{x}^{2}\right)=\int_{1}^{\mathrm{e}} \mathrm{x}^{2}\left(\frac{1}{\mathrm{x}}\right) \mathrm{dx}=\int_{1}^{\mathrm{e}} \mathrm{x} d \mathrm{dx}=\frac{\mathrm{x}^{2}}{2}=\frac{\mathrm{e}^{2}-1}{2}$
$\operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}=\frac{\mathrm{e}^{2}-1}{2}-\frac{2\left(\mathrm{e}^{2}-2 \mathrm{e}+1\right)}{2}=\frac{4 \mathrm{e}-\mathrm{e}^{2}-3}{2}$
$\int_{1}^{\mathrm{x}} \frac{1}{\mathrm{x}} \mathrm{dx}=0.5 \Rightarrow \ln \mathrm{x}=0.5 \Rightarrow \mathrm{x}=1.64872$ is the median
$\mathrm{P}(1.5>\mathrm{x})=\int_{1}^{1.5} \frac{1}{\mathrm{x}} \mathrm{dx}=\ln (1.5)=0.4055 \mathrm{P}(1.2<\mathrm{x})$
$=\int_{1.2}^{\mathrm{e}} \frac{1}{\mathrm{x}} \mathrm{dx}=1-\ln (1.2)=0.8177$

Answer of question 4

I) $f(x, y, z)=x^{2}+y^{2}+z^{2}$ s.t $g(x, y, z)=3 x+2 y+z=24$, therefore $f_{x}=\lambda g_{x} \Rightarrow$ $2 \mathrm{x}=3 \lambda$ and $\mathrm{f}_{\mathrm{y}}=\lambda \mathrm{g}_{\mathrm{y}} \Rightarrow 2 \mathrm{y}=2 \lambda$ and $\mathrm{f}_{\mathrm{z}}=\lambda \mathrm{g}_{\mathrm{z}} \Rightarrow 2 \mathrm{z}=\lambda$, thus $(2 / 3) \mathrm{x}=\mathrm{y}=2 \mathrm{z}$, hence $\mathrm{y}=(2 / 3) \mathrm{x}$ and $\mathrm{z}=(1 / 3) \mathrm{x}$, but $3 \mathrm{x}+2 \mathrm{y}+\mathrm{z}=24$ and so $3 \mathrm{x}+2(2 / 3) \mathrm{x}+$ $(1 / 3) \mathrm{x}=24 \Rightarrow 14 \mathrm{x}=72 \Rightarrow \mathrm{x}=36 / 7$ and $\mathrm{y}=24 / 7$ and $\mathrm{z}=12 / 7$, therefore $(36 / 7$, $24 / 7,12 / 7$) is the nearest point
II) $\frac{\partial}{\partial \mathrm{c}}\left[\frac{\mathrm{x}^{2}}{\mathrm{c}^{2}}+\frac{\mathrm{y}^{2}}{(1-\mathrm{c})^{2}}-1=0\right] \Rightarrow \frac{-2 \mathrm{x}^{2}}{\mathrm{c}^{3}}+\frac{2 \mathrm{y}^{2}}{(1-\mathrm{c})^{3}}=0 \Rightarrow \frac{(1-\mathrm{c})^{3}}{\mathrm{c}^{3}}=\frac{\mathrm{y}^{2}}{\mathrm{x}^{2}} \Rightarrow \mathrm{c}=\frac{1}{\sqrt[3]{\frac{\mathrm{y}^{2}}{\mathrm{x}^{2}}}+1}$

The envelope is $\frac{x^{2}}{\left[\frac{1}{\sqrt[3]{\frac{y^{2}}{x^{2}}}+1}\right]^{2}}+\frac{y^{2}}{\left(1-\left[\frac{1}{\sqrt[3]{\frac{y^{2}}{x^{2}}}}+1\right)^{2}\right.}-1=0$

