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Q1 Solve the differential equations [ 15 marks]

(x3  +  y3 )dx - 3xy2 dy = 0     y`` -3y` +2y = 2 x2 + ex + xex (D2 – 6D + 13)y = 8e3x cos2x

Q2 Test for convergence [ 15 marks]
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Q3 Answer the following [ 25 marks]

I) At Kennedy middle School, the probability that a student takes Technology and Spanish is

0.087 and the probability that a student takes Technology is 0.68. What is the probability that a

student takes Spanish given that the student is taking Technology?

II) If a r.v. X takes the values 1, 2, 3, 4 such that 2P(X = 1)= 5P(X = 2)  = P(X = 3) = 3P(X = 4)

. Find the probability distribution of X, also find mean and variance.

III) Let X be a continuous r.v. with p.d.f.  f(x) = (1/x) for 1< x < e ,  find E(ln X), Var(X),

median, P(1.5 > x), P(1.2< x).

Q4  Answer the following [ 15 marks]

I) Find the point on the plane 3x + 2y + z = 24 that is nearest to the origin

II) Find envelope for the family of ellipses
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Model answer

Answer of question 1

(x3  +  y3 )dx - 3xy2 dy = 0  (solve)

Answer

It is homogeneous, thus put y = vx dy = v dx + x dv

Thus (1-2v2) dx – 3 v2 x dv = 0
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y`` -3y` +2y = 2 x2 + ex + xex
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y(x) = yp+ yH, therefore yH  = c1e
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(D2 – 6D + 13)y = 8e3x cos2x



Answer

yh = e3x[c1cos2x + c2sin2x],

yp= 2 2
3x 3x1 18e cos2x = 8e  cos2x

D 6D +13 (D +3) 6(D +3) +13 
=

2
3x 3x18e  cos2x = 2xe  sin 2x
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Answer of question 2
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By ratio test, we get that
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(Test for convergence)
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 is called conditionally

convergent.

Answer of question 3

I) P(TS) = 0.087, P(T) = 0,68, therefore P(S/T) = P(TS) / P(T) = 0.087/0.68

II) Let 2P(X = 1)= 3P(X = 2)  = P(X = 3) =   5P(X = 4) = 30 P, therefore P(X=1) =

15P,  P(X=2) = 10P, P(X = 3) = 30P, P(X = 4) = 6P, but P(X=1) + P(X=2) +

P(X=3) + P(X=4)  = 1, thus P = 1/61

X 1 2 3 4

fX) 15/61 10/61 30/61 6/61

E(X) = (1/61)[15 + 20 + 90 + 24] = 149/61

E(X2) =  (1/61)[15 + 40 + 270 + 96] = 421/61

Var(X) = (421/61) – (149/61)2
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P(1.5 > x) =
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Answer of question 4

I) f(x, y, z) = x2 + y2 + z2    s.t   g(x, y, z) = 3x + 2y + z = 24, therefore fx= gx

2x  = 3  and  fy= gy  2y  = 2  and fz= gz  2z  = , thus (2/3)x = y = 2z,

hence y = (2/3)x  and z = (1/3)x, but 3x + 2y + z = 24  and so 3x + 2(2/3)x  +

(1/3)x = 24  14x = 72 x = 36/7 and y = 24/7  and z = 12/7, therefore (36/7,

24/7, 12/7) is the nearest point
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