
I) Define Cycle - Length of walk Degree of vertices - Tree - Condition of existence for Eulerian path and Eulerian circuit - Sub graph
II) Referring to the given graph, find
a) Cycle of length 6 starts and ends at V 1
b) Degree of the graph
c) Spanning tree
d) Eulerian path
e) Regular sub graph
f) Adjacency matrix

## Question 2

Find $U(x, y)$ using finite difference method for P.D.E. $U_{x x}+U_{y y}=4$. If we consider a square mesh of height consists of 4 equal parts with B.C. $U(0, y)=y^{2}, U(1, y)=(y-1)^{2}, 0 \leq y \leq 2 \&$ $\mathbf{U}(\mathbf{x}, \mathbf{0})=\mathbf{x}^{\mathbf{2}}, \mathbf{U}(\mathbf{x}, 2)=(\mathrm{x}-2)^{2}, 0 \leq x \leq 1$. Solve the constructed system Gauss Jordan Method.

## Question 3

30 Marks
I) Solve the following system of equations using Picard up to $2^{\text {nd }}$ approximation

$$
x^{`}-3 y^{`}=-2 t+x-2 y-7, \quad 2 x^{\prime}+y^{`}=10 t+y+3-t^{2}, x(0)=1, y(0)=-3
$$

Find $\mathbf{x}(0.2)$ by taking $h=0.1$ using Euler method.
II) Find the constants of the following curve $y(x)=\frac{1}{a+b x+c x^{2}}$ that fit the following data $(-1,2),(3,4),(6,9)$.

Board of examiners : Dr. eng. Khaled El Naggar

## Model answer

## Answer of Question1


a) Define

Cycle: Closed walk with no repeated vertices except that the initial vertex is the terminal vertex
Length of walk: is the number of edges in the walk. Degree of vertices: The degree deg(v) of vertex $v$ is the number of edges incident on $v$
Tree: is a connected graph which has no cycles Euler Path existence: $\mathbf{2}$ or no odd-degree nodes exist in the graph.
Euler Circuit existence: no odd-degree nodes exist in the graph.
Sub graph: consists of group of vertices and edges which belong to the main graph
a) Cycle of length 6 starts and ends at V1 :

V1 V4 V5 V6 V8 V7 V1
b) Degree of the graph : $6+2+6+3+5+2+3+3=30$
c) The Spanning tree

f) Adjacency matrix is
d) No Eulerian path
e) Regular sub graph

$\left[\begin{array}{llllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0\end{array}\right]$

## Answer of Question 2

$\mathrm{h}=\mathrm{k}=0.5$, therefore

$\mathrm{u}_{1}=0, \mathrm{u}_{2}=0.25, \mathrm{u}_{3}=1, \mathrm{u}_{6}=0.25, \mathrm{u}_{7}=1, \mathrm{u}_{12}=2.25, \mathrm{u}_{13}=4, \mathrm{u}_{14}=2.25, \mathrm{u}_{15}=1, \mathrm{u}_{10}=0.25, \mathrm{u}_{9}=0$, $u_{4}=0.25$ and the general elliptic equation will be

$$
u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}-4 u_{i, j}=4 h^{2}
$$

Thus $u_{6}+u_{4}+u_{8}+u_{2}-4 u_{5}=0.25(4) \Rightarrow u_{8}-4 u_{5}=0.25$
$\mathrm{u}_{7}+\mathrm{u}_{9}+\mathrm{u}_{5}+\mathrm{u}_{11}-4 \mathrm{u}_{8}=0.25(4) \Rightarrow \quad \mathrm{u}_{5}+\mathrm{u}_{11}-4 \mathrm{u}_{8}=0$
$\mathrm{u}_{12}+\mathrm{u}_{10}+\mathrm{u}_{8}+\mathrm{u}_{14}-4 \mathrm{u}_{11}=0.25(4) \Rightarrow \mathrm{u}_{8}-4 \mathrm{u}_{11}=-1.75$
By solving the 3 equations, we can get $u_{5}, u_{8}, u_{11}$

## Answer of Question 3

By solving the 2 equations, we get $\mathrm{x}^{\prime}=\frac{1}{7}\left[28 \mathrm{t}+\mathrm{y}+\mathrm{x}-3 \mathrm{t}^{2}+2\right], \mathrm{y}^{\prime}=\frac{1}{7}\left[14 \mathrm{t}+5 \mathrm{y}-2 \mathrm{x}-\mathrm{t}^{2}+17\right]$,
$\mathrm{x}_{0}=1, \mathrm{y}_{0}=-3, \mathrm{t}_{0}=0$, therefore $\mathrm{x}_{\mathrm{n}+1}(\mathrm{t})=\mathrm{x}_{0}+\frac{1}{7} \int_{0}^{\mathrm{t}}\left[28 \mathrm{t}+\mathrm{y}_{\mathrm{n}}+\mathrm{x}_{\mathrm{n}}-3 \mathrm{t}^{2}+2\right] \mathrm{dt}$,
Thus $\mathrm{x}_{1}(\mathrm{t})=\mathrm{x}_{0}+\frac{1}{7} \int_{0}^{\mathrm{t}}\left[28 \mathrm{t}+\mathrm{y}_{0}+\mathrm{x}_{0}-3 \mathrm{t}^{2}+2\right] \mathrm{dt}=1+\frac{1}{7} \int_{0}^{\mathrm{t}}\left[28 \mathrm{t}-3 \mathrm{t}^{2}\right] \mathrm{dt}=1+2 \mathrm{t}^{2}-\frac{\mathrm{t}^{3}}{7}$
And $\mathrm{y}_{\mathrm{n}+1}(\mathrm{t})=\mathrm{y}_{0}+\frac{1}{7} \int_{0}^{\mathrm{t}}\left[14 \mathrm{t}+5 \mathrm{y}_{\mathrm{n}}-2 \mathrm{x}_{\mathrm{n}}-\mathrm{t}^{2}+17\right] \mathrm{dt}$
Thus $\mathrm{y}_{1}(\mathrm{t})=\mathrm{y}_{0}+\frac{1}{7} \int_{0}^{\mathrm{t}}\left[14 \mathrm{t}+5 \mathrm{y}_{0}-2 \mathrm{x}_{0}-\mathrm{t}^{2}+17\right] \mathrm{dt}=-3+\frac{1}{7} \int_{0}^{\mathrm{t}}\left[14 \mathrm{t}-\mathrm{t}^{2}\right] \mathrm{dt}=-3+\mathrm{t}^{2}-\frac{\mathrm{t}^{3}}{21}$
II) Let $\mathrm{Y}=1 / \mathrm{y}=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}$, so that the constants can be obtained using the following matrix form :

$$
\left(\begin{array}{ccc}
\mathrm{N} & \sum_{i=1}^{N} x_{i} & \sum_{i=1}^{N} x_{i}^{2} \\
\sum_{i=1}^{N} x_{i} & \sum_{i=1}^{N} x_{i}^{2} & \sum_{i=1}^{N} x_{i}^{3} \\
\sum_{i=1}^{N} x_{i}^{2} & \sum_{i=1}^{N} x_{i}^{3} & \sum_{i=1}^{N} x_{i}^{4}
\end{array}\right)(b)=\left(\begin{array}{l}
\sum_{i=1}^{N} Y_{i} \\
\sum_{i=1}^{N} x_{i} Y_{i} \\
\sum_{i=1}^{N} x_{i}^{2} Y_{i}
\end{array}\right)
$$

Given $\mathrm{N}=3, \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{i}}=8, \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{i}}^{2}=46, \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{i}}^{3}=242, \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{i}}^{4}=1378, \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{Y}_{\mathrm{i}}=0.861, \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}=0.92$, $\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{i}}^{2} \mathrm{Y}_{\mathrm{i}}=6.75$, thus by Cramer rule we get $\mathrm{a}, \mathrm{b}$ and $c$ such that: $\mathrm{a}=\frac{\Delta_{\mathrm{a}}}{\Delta}, \mathrm{b}=\frac{\Delta_{\mathrm{b}}}{\Delta}, \mathrm{c}=\frac{\Delta_{\mathrm{c}}}{\Delta}$,
where $\Delta=\left|\begin{array}{ccc}3 & 8 & 46 \\ 8 & 46 & 242 \\ 46 & 242 & 1378\end{array}\right|, \Delta_{\mathrm{a}}=\left|\begin{array}{ccc}0.86 & 8 & 46 \\ 0.92 & 46 & 242 \\ 6.75 & 242 & 1378\end{array}\right|, \Delta_{\mathrm{b}}=\left|\begin{array}{ccc}3 & 0.86 & 46 \\ 8 & 0.92 & 242 \\ 46 & 6.75 & 1378\end{array}\right|$,

$$
\Delta_{\mathrm{c}}=\left|\begin{array}{ccc}
3 & 8 & 0.86 \\
8 & 46 & 0.92 \\
46 & 242 & 6.75
\end{array}\right|
$$

