Benha University Faculty of Engineering at Shoubra Electrical Engineering Department M.Sc. (Electronics Engineering)

Final Term Exam (Spring 2015) Date: Tuesday (2/6/2015) Subject: CAD Duration: 3 hours (for the 2 parts)

Part (II) Answer all the following questions in the same sheet

• No. of questions : 3

• Total Mark: 70 Marks

Model Answer

Question (1) (20 Marks)

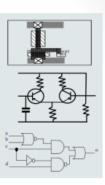
- 1- Mention some of the electronic design objectives.
- 2- List some challenges to the design process. Give some possible solutions.
- 3- Discuss the abstraction hierarchy design paradigm.
- 4- What is the aim of testing? What are the advantage of Built-In Self Test (BIST).

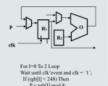
Answer of Question (1)

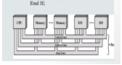
- 1. Objectives:
 - Unit cost: the cost of manufacturing each copy of the system, excluding NRE cost.
 - NRE cost (Non-Recurring Engineering cost): The one-time cost of designing the system.
 - Size: the physical space required by the system.
 - Performance: the execution time or throughput .
 - Power: the amount of power consumed by the system.
 - Testability: the easiness of testing the system to make sure that it works correctly.
 - Flexibility: the ability to change the functionality of the system without incurring heavy NRE cost.

2. Challenges:

- System complexity
- Increasing functionality and diversity
- Increasing performance
- Stringent design requirements
- Low cost and low power
- Dependability: reliability, safety and security
- Testability and flexibility
- Technology challenges for cost-efficient implementation
- Deep submicron effects (e.g., cross talk and soft errors)


Possible Solutions:


- Powerful design methodology and CAD tools.
- Advanced architecture (modularity).
- Extensive design reuse.


3. Abstraction hierarchy:

Abstraction Hierarchy

- Layout/silicon level : The physical layout of the integrated circuits is described.
- Circuit level : The detailed circuits of transistors, resistors, and capacitors are described.
- Logic (gate) level : The design is given as gates and their interconnections.
- Register-transfer level (RTL) : Operations are described as transfers of values between registers.
- Algorithmic level : A system is described as a set of usually concurrent algorithms.
- System level : A system is described as a set of processors and communication channels.

4. Testing aim:

Testing aims at the detection of physical faults (production errors/defects and physical failures). Advantages of BIST:

- No need for expensive ATE.
- Speed testing.
- Concurrent test possible.
- Support field test and diagnosis

Question (2) (15 Marks)

- 1- Give some applications of the Hardware Description Language (HDL).
- 2- What is the difference between behavioral and structural ways in VHDL modeling?
- 3- Describe a test bench model.

Answer of Question (2)

- 5. HDL Applications
 - o Model and document digital systems
 - Different levels of abstraction e.g. behavioral, structural, etc.
 - o Verify design
 - o Synthesize circuits
 - Convert from higher abstraction levels to lower abstraction levels

6. <u>Behavioral & Structural</u> ways

Behavioral ways	Structural way:
 Architecture body describes an implementation of an entity may be several per entity Behavioral architecture describes the algorithm performed by the module contains process statements, each containing sequential statements, including signal assignment statements and wait statements 	 implements the module as a composition of subsystems contains signal declarations, for internal interconnections the entity ports are also treated as signals component instances instances of previously declared entity/architecture pairs port maps in component instances connect signals to component ports

7. test bench model

- o a model that uses the designed model
- it applies test sequences to the inputs, monitors values on output signals and report error or warning messages.

Question (3) (35 Marks)

- 1- Write a VHDL code to implement the block diagram shown in Fig. 1 with its internal behavior as defined by the shown truth table. Write a test bench for it and draw the corresponding waveforms for your test cases. Assume signal types of BIT.
- 2- Use the structural way and write a VHDL code to construct 2 instances of Ckt_3 connected together with a common input clock.

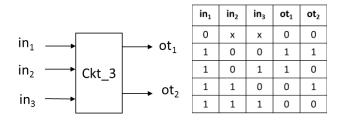
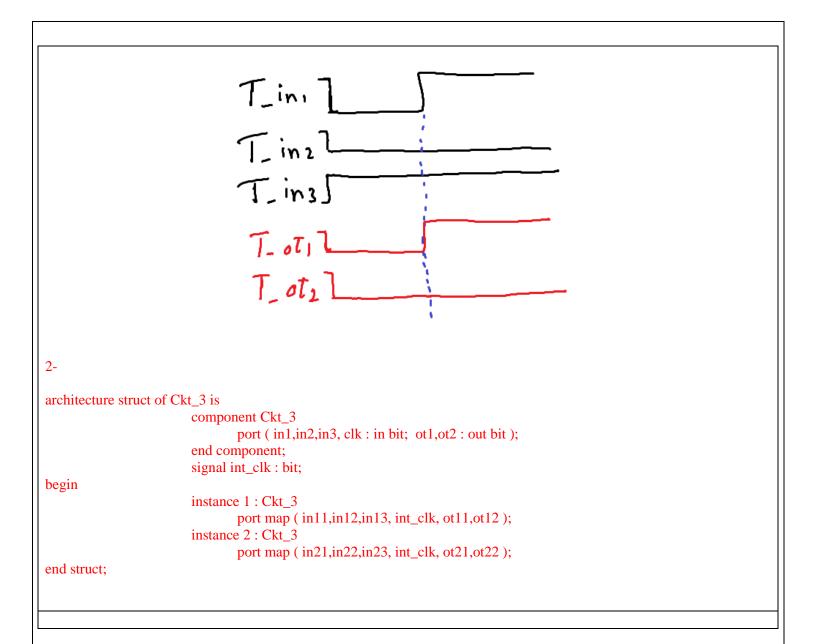


Fig. 1

Good Luck, Dr. Ahmad El-Banna

Answer of Question (3)


1-

end Ckt_3 _TB;

Note: you can continue your answer in the back of the page.

```
library ieee;
use ieee.std_logic_1164.all;
                            _____
entity Ckt_3 is
port(
                         in1, in2, in3: in bit;
                         ot1, ot2:
                                          out bit
);
end Ckt_3;
architecture behv of Ckt_3 is
begin
     process(in1, in2, in3)
  begin
     if (in1='0') then
                         ot1 <= '0';
                         ot2 <= '0';
     else
                         ot 1 \le 1 ot 1 \ge 1
                         ot 2 \le 100 ot 3:
     end if:
  end process;
end behv;
test bench:
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
entity Ckt_3 _TB is -- empty entity
```

```
architecture TB of Ckt_3 _TB is
signal T_in1:bit:='0';
signal T_in2:bit:='0';
signal T_ in3:bit:='0';
signal T_ot1:bit;
signal T_ot1:bit;
component Ckt_3
port(
                           in1, in2, in3:
                                             in bit;
                           ot1, ot2: out bit
);
end component;
begin
T_Ckt_3: Ckt_3 port map (T_in1, T_in2, T_in3, T_ot1, T_ot2);
process
variable err_cnt: integer :=0;
begin
T in2<='0';
T_in3<='1';
-- case select eqaul '0'
                           wait for 10 ns;
                           T_in1 <= '0';
                           wait for 1 ns;
                           assert (T_ot1='0') report "Error Case 0" severity error;
                         assert (T_ot2='0') report "Error Case 0" severity error;
                           if (T ot1/='0'then
                              err_cnt := err_cnt+1;
                           end if;
                         if (T ot2/='0'then
                              err_cnt := err_cnt+1;
                           end if;
-- case select equal '1'
                           wait for 10 ns;
                           T_in1 <= '1';
                           wait for 1 ns;
                           assert (T_ot1='1') report "Error Case 0" severity error;
                         assert (T_ot2='0') report "Error Case 0" severity error;
                           if (T_ot1/='1'then
                              err_cnt := err_cnt+1;
                           end if;
                         if (T_ot2/='0'then
                              err_cnt := err_cnt+1;
                           end if;
-- summary of all the tests
                           if (err_cnt=0) then
                              assert (false)
                              report "Testbench of Mux completed sucessfully!"
                              severity note;
                           else
                              assert (true)
                              report "Something wrong, try again!"
                              severity error;
                           end if;
                           wait;
  end process;
end Ckt_3 _TB;
```

