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Question 1                                                                                                                             [ 100]
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 ii- Find the Residues of the following functions:
2

4
zf(z) =

z 1
, f(z) =

2z

2 22 2

e

(z 9) (z 2z 2)  
,    f(z) =

2

2 2
z -2z

(z +1) (z + 4)

Question 2                                [ 20]

Expand the function f(z) =
2 2

z

(z -1)(z 4)
 into a Laurent series in the power of z in the annulus

ǀzǀ > 2, then deduce the residues.

Question 3                                                              [20]

i) Find the harmonic conjugate of u = x2 - y2 + y, then find f(z).

ii) Find the imaginary part of tanz

Question 4                                                   [60]

Discuss briefly the following terms:

Laurent Series –Analytic function – Stretching and rotation transformations - Removable

singularities - Essential singularities- Residues – Pole-  Polar form of Cauchy Riemann equations

(Derive) – Calculation of Residues – Linear and Bilinear transformations - Cauchy theorem

(state and prove).
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Answer of question 1


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Answer of question 2
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Answer of question 3

i) Since u = x2 - y2 + y is harmonic, therefore ux = vy = 2x, therefore v = 2xy + (x)  and

hence vx = 2y + `(x) = - uy = 2y -1  `(x)  = -1 (x)  = -x.

Therefore f(z) = x2 - y2 + y + i (2xy - x ), thus f(z) = z2 – i z
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Answer of question 4

Stretching :   (w = a z)

By this transformation, figures in the z plane are stretched or (or contracted) in the direction

z if a > 1 (or 0 < a < 1). We contraction as a special case of stretching.

Rotation transformations: w = ei θ z

 By this transformation, figures in the z plane are rotated through an angle θ. if θ > 0, then

rotation is counterclockwise, while if θ > 0  the rotation is clockwise.

Laurent Series: If f(z) has a pole of order n at z = a , but is analytic at every other point

inside and on a circle c with center at a , then  (z-a)nf(z) is analytic at all points inside and on

c and has Taylor series  about z= a so that :



2-n -n+1 -1
0 1 2n n-1

a aaf(z) = .... a a (z - a) + a (z - a) ....
(z -a) (z -a)(z -a)

      called Laurent Series for

f(z)  and 2
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part, z = a  is called pole of order n.

Analytic function: A complex function is said to be analytic on a region R if it is complex

differentiable at every point in R.

Removable singularities: If a single–valued function f(z) is not defined at z = a , but

z a

f(z)
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 exist, z = a called removable singularity

Essential singularities: If f(z) is single–valued, then any singularity which is not a pole or

removable singularity is called essential singularity.

Residues: Let f(z) be single-valued and analytic inside and on a circle c except at the point z
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where a-1 is the residue of f(z)

Polar form of Cauchy Riemann equations: In Polar form

Cauchy Riemann equations are
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Calculation of Residues:

1st case: (Simple pole)

http://mathworld.wolfram.com/ComplexFunction.html
http://mathworld.wolfram.com/ComplexDifferentiable.html
http://mathworld.wolfram.com/ComplexDifferentiable.html


The residue of the function f(z) at z =a  which is simple pole (pole of order one) is given by
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Linear and Bilinear transformations:

Cauchy theorem: If a function f(z) is analytic inside and on a simple closed curve C and

f`(z) is continuous inside and on the curve C, then
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