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Question 1 [ 100]
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Question 2 [ 20]

z

Expand the function f(z) =
P @ (22-1)(Z2 + 4)

into aLaurent seriesin the power of z in the annulus

Iz| > 2, then deduce the residues.
Question 3 [20]
i) Find the harmonic conjugate of u = x* - y* +y, then find f(z).

i) Find the imaginary part of tanz

Question 4 [60]
Discuss briefly the following terms:

Laurent Series —Analytic function — Stretching and rotation transformations - Removable
singularities - Essential singularities- Residues — Pole- Polar form of Cauchy Riemann equations
(Derive) — Calculation of Residues — Linear and Bilinear transformations - Cauchy theorem
(state and prove).
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Answer of question 1
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z= 1,2 are inside the contour c, therefore the residue at z = 1, 2 are ——, — hence
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Answer of question 2
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Answer of question 3

i) Since u = x* - y* + y is harmonic, therefore u, = v, = 2x, therefore v = 2xy + ¢(x) and
hencevy =2y + ¢ (X)=-u=2y -1 = ¢ (X) =-1= ¢(X) =-x.
Thereforef(z) = x*-y*+y +i (2xy - x), thusf(z) = Z*-i z

tanx +tan(iy)  tanx+itanh(y)
1-tanxtan(iy) 1—itanxtanh(y)

1)  tanz =tan(x+y) =

_ [tanx + i tanh(y)][1+ i tanx tanh(y)]
1+ tan? xtanhz(y)

_ [tan®x + ] tanh(y)
1+ tanzxtanhz(y)

, therefore the imaginary part

Answer of question 4

Stretching: (w=az)

By this transformation, figures in the z plane are stretched or (or contracted) in the direction
zifa>1(or 0<a<1). We contraction as a special case of stretching.

Rotation transformations; w=¢€ ° z

By this transformation, figures in the z plane are rotated through an angle 6. if 6 > 0, then
rotation is counterclockwise, whileif 8> 0 therotation is clockwise.

Laurent Series: If f(z) has a pole of order n at z = a, but is analytic at every other point

inside and on acircle c with center at a, then (z-a)"f(z) is analytic at all pointsinside and on

¢ and has Taylor series about z=aso that :



a a
f(z)= 20y Sy S

= _ _a\2 .
-3 Z-am (Z_a)+a0+a1(z a)+a,(z-a)°+...caled Laurent Series for

f(z) and a,+a(z-a)+a,(z-a*+.....1s called analytic part, the remaining is called principle
part, z = a is called pole of order n.

Analytic function: A complex function issaid to be analytic on aregion R if it is complex
differentiable at every point in R.

Removable singularities. If a single-valued function f(z) is not defined at z = a, but

Iim% exist, z = acalled removable singularity

Essential singularities: If f(z) is single-valued, then any singularity which is not a pole or
removable singularity is called essential singularity.

Residues: Let f(z) be single-valued and analytic inside and on acircle ¢ except at the point z

= achosen as center of ¢, then the Laurent seriesabout z=a isgivenby f(z) = i a (z-a",

where a; isthe residue of f(2)

Polar form of Cauchy Riemann equations: In Polar form

. . 1 1 .
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Calculation of Residues:

1% case: (Simple pole)


http://mathworld.wolfram.com/ComplexFunction.html
http://mathworld.wolfram.com/ComplexDifferentiable.html
http://mathworld.wolfram.com/ComplexDifferentiable.html

The residue of the function f(z) at z =a which is simple pole (pole of order one) is given by

Res=a, =lim(z-af(2)

2" case: (pole of order n)
The residue of the function f(z) at z=a which ispoleof order n isgiven by

1
ng?:a.l n- 1)' d nl(z a)"f(2)

Linear and Bilinear transformations:;

Cauchy theorem: If afunction f(z) isanalytic inside and on a simple closed curve C and

f*(2) is continuous inside and on the curve C, then gSf(z) dz=0

Pr oof

gSf(z) dz= <j>udx-vdy+i Sﬁvdx+udy By Green “stheorem , we can get
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closed curve C, therefore f(z) satisfy Cauchy Riemann, i.e. u_ov ov__oau

_N h
X oy ox oy o

@ﬂadz:o



