Benha University	Functions of advanced complex variable		
Faculty of Engineering (Shoubra)	Final exam 6-6-2015		
Engineering Mathematics and	Qualified year EMM 408		
Physics Department		Time allowed: 3 hours Scores $: 200$	

Question 1

[100]
i- Evaluate the following integrals: $\int_{1+i}^{2+8 i}\left[x^{2}+i x y\right] d z$ along $y=x^{3}, \quad \int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+9} d x$,
$\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} \mathrm{~d} \theta, \quad \quad \int_{-\infty}^{\infty} \frac{\mathrm{x}^{2}}{\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)\left(\mathrm{x}^{2}+\mathrm{b}^{2}\right)} \mathrm{dx}, \quad \quad \oint_{\mathrm{c}} \frac{\mathrm{ze}^{\mathrm{z}}}{(\mathrm{z}+2)^{3}} \mathrm{dz},|\mathrm{z}|=3$,
$\oint_{c} \frac{z^{4}}{(z+1)(z-i)^{2}} d z$, c is ellipse $9 x^{2}+4 y^{2}=36$,

$$
\left.\oint \frac{\mathrm{z}+1}{\mathrm{c}} \mathrm{z}^{2}+2 \mathrm{z}+4\right) \mathrm{dz},|\mathrm{z}+1+\mathrm{i}|=2
$$

ii- Find the Residues of the following functions:

$$
\mathrm{f}(\mathrm{z})=\frac{\mathrm{z}^{2}}{\mathrm{z}^{4}-1}, \quad \mathrm{f}(\mathrm{z})=\frac{\mathrm{e}^{2 \mathrm{z}}}{\left(\mathrm{z}^{2}+9\right)^{2}\left(\mathrm{z}^{2}+2 \mathrm{z}+2\right)^{2}}, \quad \mathrm{f}(\mathrm{z})=\frac{\mathrm{z}^{2}-2 \mathrm{z}}{(\mathrm{z}+1)^{2}\left(\mathrm{z}^{2}+4\right)}
$$

Question 2

Expand the function $f(z)=\frac{z}{\left(z^{2}-1\right)\left(z^{2}+4\right)}$ into a Laurent series in the power of z in the annulus $\mathbf{z}>\mathbf{2}$, then deduce the residues.

Question 3

i) Find the harmonic conjugate of $u=x^{2}-y^{2}+y$, then find $f(z)$.
ii) Find the imaginary part of tanz

Question 4

Discuss briefly the following terms:
Laurent Series -Analytic function - Stretching and rotation transformations - Removable singularities - Essential singularities- Residues - Pole- Polar form of Cauchy Riemann equations (Derive) - Calculation of Residues - Linear and Bilinear transformations - Cauchy theorem (state and prove).

Answer of question 1

$$
\text { - } \left.\left.\int_{1+i}^{2+8 i}\left[x^{2}+i x y\right] d z=\int_{1+i}^{2+8 i}\left[x^{2}+i x y\right][d x+i d y]=\int_{1+i}^{2+8 i} x^{2} d x-x y d y\right]+i \int_{1+i}^{2+8 i} x y d x+x^{2} d y\right]
$$

Since the contour is $y=x^{3}$, therefore $d y=3 x^{2} d x$, hence

$$
\int_{1+i}^{2+8 i}\left[x^{2}+i x y\right] d z=\int_{1}^{2}\left[x^{2}-3 x^{6}\right] d x+i \int_{1}^{2}\left[4 x^{4}\right] d x=\frac{7}{3}-\frac{384}{7}+\frac{124}{5}=-\frac{2911}{105}
$$

- Since $\int_{0}^{\infty} \frac{\cos x}{x^{2}+9} d x=\frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+9} d x$

Consider $\quad \underset{c}{ } \frac{e^{i z}}{\mathrm{z}^{2}+9} \mathrm{dz}, \mathrm{c}$ consisting of the line along the x axis from -R to R and the semi circle above x axis, hence only $z=i \quad$ inside c such that $\operatorname{Res}_{z=3 i} f(z)=\lim _{z \rightarrow 3 i}(z-3 i) \frac{e^{i z}}{z^{2}+9}=\frac{e^{-3}}{6 i}$, therefore
$\oint_{c_{\mathrm{z}}} \frac{\mathrm{e}^{\mathrm{iz}}}{\mathrm{z}^{2}+9} \mathrm{dz}=2 \pi \underset{\mathrm{Z}=3 \mathrm{i}}{\operatorname{Res}}=2 \pi \mathrm{i} \frac{\mathrm{e}^{-3}}{6 \mathrm{i}}=\frac{\pi}{3} \mathrm{e}^{-3}$, hence
$\int_{-R}^{R} \frac{e^{i x}}{x^{2}+9} d x=\frac{\pi}{3} e^{-3}=\int_{-R}^{R} \frac{\cos x}{x^{2}+9} d x+i \int_{-R}^{R} \frac{\sin x}{x^{2}+9} d x$, thus
$2 \int_{0}^{R} \frac{\cos x}{x^{2}+9} d x=\frac{\pi}{3} e^{-3}$, but $R \rightarrow \infty$, therefore $\int_{0}^{\infty} \frac{\cos x}{x^{2}+9} d x=\frac{\pi}{6} e^{-3}$

- $5-4 \cos \theta=5-4\left(\frac{\mathrm{z}+\mathrm{z}^{-1}}{2}\right)=\frac{-2 \mathrm{z}^{2}+5 \mathrm{z}-2}{\mathrm{z}}$, therefore

$$
\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta=\frac{-1}{2 i} \int_{c} \frac{\left(z^{6}+1\right) d z}{2 z^{2}-5 z+2}=\frac{-1}{2 i} \int_{c} \frac{\left(z^{6}+1\right) d z}{(2 z-1)(z-2)}
$$

$\mathrm{z}=\frac{1}{2}, 2$ are inside the contour c , therefore the residue at $\mathrm{z}=\frac{1}{2}, 2$ are $\frac{65}{192 \mathrm{i}}, \frac{-65}{6 \mathrm{i}}$ hence $\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} \mathrm{~d} \theta=\pi\left(\frac{65}{96}-\frac{65}{3}\right)$

- Since $z=-2$ inside the contour, therefore $\oint_{c} \frac{z^{z}}{(z+2)^{3}} d z=\pi i\left[\mathrm{ze}^{z}+e^{z}\right]_{z=-2}=-\pi i e^{-2}$
- Let $f(z)=\frac{z^{2}}{\left(z^{2}+a^{2}\right)\left(z^{2}+b^{2}\right)}$, where $z= \pm$ ai, \pm bi are simple poles, but the contour is the upper half of complex plane from -R to R , therefore we have to get the residue at $\mathrm{z}=\mathrm{ai}, \mathrm{bi}$
$\underset{z=a i}{\operatorname{Res}}=\lim _{z \rightarrow a i}(z-a i) \frac{z^{2}}{\left(z^{2}+a^{2}\right)\left(z^{2}+b^{2}\right)}=\frac{a^{2}}{2 a i\left(-a^{2}+b^{2}\right)}=\frac{a}{2 i\left(a^{2}-b^{2}\right)}$. From symmetry, $\underset{z=b i}{\operatorname{Res}}=\frac{-b}{2 i\left(a^{2}-b^{2}\right)}$, thus $\int_{-R}^{R} \frac{z^{2}}{\left(z^{2}+a^{2}\right)\left(z^{2}+b^{2}\right)} d z=2 \pi i(\underset{z=a i}{\operatorname{Res}}+\underset{z=b i}{\operatorname{Res}})=\frac{\pi}{a+b}$ as $R \rightarrow \infty \quad$, therefore $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} d x=\frac{\pi}{a+b}$
- Since the 2 poles are inside the contour, therefore $\oint_{c} \frac{z^{4}}{(z+1)(z-i)^{2}} d z=2 \pi i \sum \operatorname{Res}$ $\operatorname{Res}_{\mathrm{z}=-1}=\lim _{\mathrm{z} \rightarrow-1} \frac{\mathrm{z}^{4}}{(\mathrm{z}-\mathrm{i})^{2}}=\frac{1}{(1+\mathrm{i})^{2}}=-\frac{\mathrm{i}}{2}, \operatorname{Res}_{\mathrm{z}=\mathrm{i}}=\lim _{\mathrm{z} \rightarrow \mathrm{i}} \frac{\mathrm{d}}{\mathrm{dz}}\left[\frac{\mathrm{z}^{4}}{(\mathrm{z}+1)}\right]=-\frac{4+3 \mathrm{i}}{2}$
Therefore $\oint_{\mathrm{c}} \frac{\mathrm{z}^{4}}{(\mathrm{z}+1)(\mathrm{z}-\mathrm{i})^{2}} \mathrm{dz}=4 \pi[1-\mathrm{i}]$
$z=-1+\sqrt{3} i$ is outside the contour, while $z=-1+\sqrt{3} i$ is inside the contour, therefore $\left.\oint \frac{\mathrm{z}+1}{\mathrm{c}} \mathrm{z}^{2}+2 \mathrm{z}+4\right) \mathrm{dz}=\oint_{\mathrm{c}} \frac{[\mathrm{z}+1] /[\mathrm{z}-(-1+\sqrt{3} \mathrm{i})]}{\mathrm{z}+(1+\sqrt{3} \mathrm{i})} \mathrm{dz}=\pi \mathrm{i}$

Answer of question 2

$$
\begin{aligned}
& \frac{\mathrm{z}}{\left(\mathrm{z}^{2}-1\right)\left(\mathrm{z}^{2}+4\right)}=\frac{1}{5}\left[\frac{1}{\left(\mathrm{z}^{2}-1\right)}-\frac{1}{\left(\mathrm{z}^{2}+4\right)}\right]=\frac{1}{5 \mathrm{z}^{2}}\left[\frac{1}{\left(1-\frac{1}{\mathrm{z}^{2}}\right)}-\frac{1}{\left(1+\frac{4}{\mathrm{z}^{2}}\right)}\right] \\
& =\frac{1}{5 \mathrm{z}^{2}}\left[\left(1+\frac{1}{\mathrm{z}^{2}}+\frac{1}{\mathrm{z}^{4}}+\ldots .\right)-\left(1-\frac{4}{\mathrm{z}^{2}}+\frac{16}{\mathrm{z}^{4}}-\ldots\right)\right]
\end{aligned}
$$

Answer of question 3

i) Since $u=x^{2}-y^{2}+y$ is harmonic, therefore $u_{x}=v_{y}=2 x$, therefore $v=2 x y+\phi(x)$ and hence $v_{x}=2 y+\phi^{\prime}(x)=-u_{y}=2 y-1 \Rightarrow \phi^{\prime}(x)=-1 \Rightarrow \phi(x)=-x$.
Therefore $f(z)=x^{2}-y^{2}+y+i(2 x y-x)$, thus $f(z)=z^{2}-i z$
ii) $\tan \mathrm{z}=\tan (\mathrm{x}+\mathrm{iy})=\frac{\tan \mathrm{x}+\tan (\mathrm{iy})}{1-\tan \mathrm{x} \tan (\mathrm{iy})}=\frac{\tan \mathrm{x}+\mathrm{itanh}(\mathrm{y})}{1-\mathrm{itan} \mathrm{x} \tanh (\mathrm{y})}$
$=\frac{[\tan \mathrm{x}+\mathrm{i} \tanh (\mathrm{y})][1+\mathrm{itan} \mathrm{x} \tanh (\mathrm{y})]}{1+\tan ^{2} \mathrm{x} \tanh ^{2}(\mathrm{y})}$, therefore the imaginary part $=\frac{\left[\tan ^{2} \mathrm{x}+1\right] \tanh (\mathrm{y})}{1+\tan ^{2} \mathrm{x} \tanh ^{2}(\mathrm{y})}$

Answer of question 4

Stretching: ($\mathrm{w}=\mathrm{az}$)
By this transformation, figures in the z plane are stretched or (or contracted) in the direction z if $\mathrm{a}>1$ (or $0<\mathrm{a}<1$). We contraction as a special case of stretching.
Rotation transformations: $w=e^{i \theta} Z$
By this transformation, figures in the z plane are rotated through an angle θ. if $\theta>0$, then rotation is counterclockwise, while if $\theta>0$ the rotation is clockwise.
Laurent Series: If $f(z)$ has a pole of order n at $z=a$, but is analytic at every other point inside and on a circle c with center at a, then $(\mathrm{z}-\mathrm{a})^{\mathrm{n}} \mathrm{f}(\mathrm{z})$ is analytic at all points inside and on c and has Taylor series about $\mathrm{z}=\mathrm{a}$ so that:
$f(z)=\frac{a_{-n}}{(z-a)^{n}}+\frac{a_{-n+1}}{(z-a)^{n-1}}+\ldots .+\frac{a_{-1}}{(z-a)}+a_{0}+a_{1}(z-a)+a_{2}(z-a)^{2}+\ldots . c$ called Laurent Series for $f(z)$ and $a_{0}+a_{1}(z-a)+a_{2}(z-a)^{2}+\ldots$. is called analytic part, the remaining is called principle part, $\mathrm{z}=\mathrm{a}$ is called pole of order n .

Analytic function: A complex function is said to be analytic on a region R if it is complex differentiable at every point in R.
Removable singularities: If a single-valued function $f(z)$ is not defined at $z=a$, but $\lim _{z \rightarrow a} \frac{\mathrm{f}(\mathrm{z})}{\mathrm{z}-\mathrm{a}}$ exist, $\mathrm{z}=\mathrm{a}$ called removable singularity
Essential singularities: If $f(z)$ is single-valued, then any singularity which is not a pole or removable singularity is called essential singularity.
Residues: Let $\mathrm{f}(\mathrm{z})$ be single-valued and analytic inside and on a circle c except at the point z $=a$ chosen as center of c, then the Laurent series about $z=a$ is given by $f(z)=\sum_{n=-\infty}^{\infty} a_{n}(z-a)^{n}$,
where a_{-1} is the residue of $f(z)$

Polar form of Cauchy Riemann equations: In Polar form

Cauchy Riemann equations are $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}$, where $x=r \cos \theta, y=r \sin \theta$

Proof

Since $\frac{\partial u}{\partial r}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial r}=\frac{\partial u}{\partial x}(\cos \theta)+\frac{\partial u}{\partial y}(\sin \theta), \quad \frac{\partial v}{\partial \theta}=\frac{\partial v}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial v}{\partial y} \frac{\partial y}{\partial \theta}=\frac{\partial v}{\partial x}(-r \sin \theta)+$ $\frac{\partial v}{\partial y}(\operatorname{rcos} \theta) \frac{\partial v}{\partial r}=\frac{\partial v}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial v}{\partial y} \frac{\partial y}{\partial r}=\frac{\partial v}{\partial x}(\cos \theta)+\frac{\partial v}{\partial y}(\sin \theta), \frac{\partial u}{\partial \theta}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta}=\frac{\partial u}{\partial x}(-r \sin \theta)$ $+\frac{\partial u}{\partial y}(\operatorname{rcos} \theta)$, but $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$, therefore $\frac{\partial u}{\partial r}=-\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}$.

Calculation of Residues:

$1^{\text {st }}$ case: (Simple pole)

The residue of the function $f(z)$ at $z=a$ which is simple pole (pole of order one) is given by

$$
\operatorname{Res}_{z=a}^{\operatorname{Res}}=\mathrm{a}_{-1}=\lim _{z \rightarrow \mathrm{a}}(\mathrm{z}-\mathrm{a}) \mathrm{f}(\mathrm{z})
$$

$2^{\text {nd }}$ case: (pole of order n)
The residue of the function $f(z)$ at $z=a$ which is pole of order n is given by

$$
\operatorname{Res}_{z=a}=a_{-1}=\frac{1}{(n-1)!} \lim _{z \rightarrow a} \frac{d^{n-1}}{d z^{n-1}}(z-a)^{n} f(z)
$$

Linear and Bilinear transformations:

Cauchy theorem: If a function $\mathrm{f}(\mathrm{z})$ is analytic inside and on a simple closed curve C and $f(z)$ is continuous inside and on the curve C, then $\oint_{c} f(z) d z=0$

Proof

$\oint_{c} f(z) d z=\oint_{c} u d x-v d y+i \oint_{c} v d x+u d y$ By Green `s theorem, we can get
$\oint_{c} f(z) d z=\iint_{R}\left(-\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d x d y+\iint_{R}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right) d x d y$, but $f(z)$ is analytic inside and on a simple
closed curve C, therefore $f(z)$ satisfy Cauchy Riemann, i.e. $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$, hence
$\oint_{c} f(z) d z=0$

