Benha University
Faculty of Engineering- Shoubra
Mechanical Engineering Department
$1^{\text {st }}$ Year Mechanical power

Final Term Exam
Date: $3^{\text {st }}$ of May 2015
Mathematics (2-B) - EMP 133
Duration : 3 hours

Answer all the following questions	- No. of questions: 8
The exam. Consists of one page	- Total Mark: 100 Marks

1) Evaluate the following integrals
a) $\int_{a}^{b}(x-a)^{m}(b-x)^{n} d x$
b) $\int_{0}^{\infty} \frac{x^{n} d x}{a^{x}}$
c) $\int_{-\pi / 4}^{\pi / 4}[\sqrt{2} \cos (\theta+\pi / 4)]^{1 / 3} d \theta$
d) $\int_{0}^{\infty}\left(\frac{e^{2 t}-\cos 3 t}{t}\right) e^{-3 t} d t$
2) Solve the following differential equations using Laplace Transform:
a) $\frac{d x}{d t}+x+4 y=10, x-\frac{d y}{d t}-y=0, x(0)=4, y(0)=3$
b) $y^{\prime}+y^{`}=2(1+t), y(2)=4, y^{`}(2)=4$
3) Find Laplace transform for $f(t)=t \sin 2 t \cosh 3 t+\left\{\begin{array}{cc}6 t & 0<t \leq 2 \\ 3 t^{2} & 2<t \leq 3 \\ 27 & t>3\end{array}\right\}+\frac{\cos 2 t-\cos 3 t}{t}$ [10]
4) Find inverse Laplace for $F(s)=\frac{s}{s^{2}+4 s+9}+\frac{e^{-2 s}}{s+3}+\frac{1}{(s+9)^{3}}$
5) A certain deck of cards contains 3 blue cards, 5 red cards, and 2 green cards. If two cards are randomly drawn from the deck, what is the probability that at least one is blue? If X is the random variable where X is the number of red cards, find expected value, variance, cumulative density function, mode, $\operatorname{Var}(3 X-1)$, and sketch P.d.f.
6) Let the r.v. X be the distance in feet between bad records on a used computer tape.

Suppose that a reasonable probability model for X is given by the p.d.f. $\mathrm{f}(\mathrm{x})=\frac{1}{40} \mathrm{e}^{-\mathrm{x} / 40}, \mathrm{x}>0$
Find m.g.f. and the mean, standard deviation.
7) Suppose the probability that a college freshman will graduate is 0.6 . Three sisters (triplets) enter college at the same time. What is the probability that at most 2 sisters will graduate?
[10]
8) Two fair dice are rolled. Find the probability that the sum rolled is at least ten, given:
A) At least one die comes up six
B) The same number appears on both dice

Model answer

Answer of question 1

a) put $x-a=y \Rightarrow d x=d y$, therefore
$\int_{a}^{b}(x-a)^{m}(b-x)^{n} d x=\int_{0}^{b-a} y^{m}[(b-a)-y]^{n} d y=(b-a)^{n} \int_{0}^{b-a} y^{m}\left[1-\frac{y}{b-a}\right]^{n} d y$.
put $\mathrm{z}=\frac{\mathrm{y}}{\mathrm{b}-\mathrm{a}} \Rightarrow(\mathrm{b}-\mathrm{a}) \mathrm{dz}=\mathrm{dy}$, thus
$\int_{a}^{b}(x-a)^{m}(b-x)^{n} d x=(b-a)^{m+n+1} \int_{0}^{1} z^{m}[1-z]^{n} d z=(b-a)^{m+n+1} \beta(m+1, n+1)$
b) Since $x \ln a=y$,
therefore $\int_{0}^{\infty} \frac{x^{n} d x}{a^{x}}=\int_{0}^{\infty} x^{n} a^{-x} d x=\int_{0}^{\infty} x^{n} e^{-x \ln a} d x=\int_{0}^{\infty}\left(\frac{y}{\ln a}\right)^{n} e^{-y} \frac{d y}{\ln a}=$ $\frac{1}{[\ln (a)]^{n+1}} \int_{0}^{\infty} y^{n} e^{-y} d y=\frac{1}{[\ln (a)]^{n+1}} \Gamma(n+1)$
c) put $\phi=\theta+\frac{\pi}{4} \Rightarrow d \phi=d \theta$, therefore
$\int_{-\pi / 4}^{\pi / 4}[\sqrt{2} \cos (\theta+\pi / 4)]^{1 / 3} \mathrm{~d} \theta=\int_{0}^{\pi / 2}[\sqrt{2} \cos \phi]^{1 / 3} \mathrm{~d} \phi=\frac{2^{1 / 6}}{2} \beta(2 / 3,1 / 2)$
d) Since $L\left\{\frac{e^{2 t}-\cos 3 t}{t}\right\}=\int_{s}^{\infty}\left[\frac{1}{s-2}-\frac{s}{s^{2}+9}\right] d s=\operatorname{Ln} \frac{\sqrt{s^{2}+9}}{s-2}$, therefore $\int_{0}^{\infty}\left(\frac{\mathrm{e}^{2 \mathrm{t}}-\cos 3 \mathrm{t}}{\mathrm{t}}\right) \mathrm{e}^{-3 \mathrm{t}} \mathrm{dt}=\left.\operatorname{Ln} \frac{\sqrt{\mathrm{s}^{2}+9}}{\mathrm{~s}-2}\right|_{\mathrm{s}=3}=\operatorname{Ln} \sqrt{18}$

Answer of question 2

a) Take Laplace to the above equations such that:
$s \mathrm{X}(\mathrm{s})-\mathrm{x}(0)+\mathrm{X}(\mathrm{s})+4 \mathrm{Y}(\mathrm{s})=10 / \mathrm{s}, \mathrm{X}(\mathrm{s})-[\mathrm{s} \mathrm{Y}(\mathrm{s})-\mathrm{y}(0)]-\mathrm{Y}(\mathrm{s})=0$, thus $(\mathrm{s}+1) \mathrm{X}(\mathrm{s})+4$ $Y(s)=10 / s+4 \ldots(1)$

$$
X(s)-(s+1) Y(s)=-3 \ldots(2)
$$

Multiply equation (2) by $(s+1)$ and subtract, therefore $\left[4+(s+1)^{2}\right] Y(s)=10 / s+3 s+7$

Thus $\mathrm{Y}(\mathrm{s})=\frac{10}{\mathrm{~s}\left[4+(\mathrm{s}+1)^{2}\right]}+\frac{3(\mathrm{~s}+1)+4}{\left[4+(\mathrm{s}+1)^{2}\right]}=\frac{2}{\mathrm{~s}}+\frac{(\mathrm{s}+1)+2}{\left[4+(\mathrm{s}+1)^{2}\right]}$
Hence $y(t)=2+e^{-t}(\cos 2 t+\sin 2 t)$, but $x=\frac{d y}{d t}+y$, therefore

$$
\mathrm{x}=2+2 \mathrm{e}^{-\mathrm{t}}(\cos 2 \mathrm{t}-\sin 2 \mathrm{t})
$$

b) By taking Laplace to both sides, we get
$S^{2} Y(S)-S y(0)-y^{\prime}(0)+S Y(S)-y(0)=2\left[\frac{1}{s}+\frac{1}{s^{2}}\right]$.
Let $y(0)=a$ and $y^{\prime}(0)=b$, therefore $\left(S^{2}+S\right) Y(S)=2\left[\frac{1}{s}+\frac{1}{s^{2}}\right]+(S+1) a+b \Rightarrow$
$\mathrm{Y}(\mathrm{S})=2\left[\frac{1}{\mathrm{~s}^{2}(\mathrm{~s}+1)}+\frac{1}{\mathrm{~s}^{3}(\mathrm{~s}+1)}\right]+\frac{1}{\mathrm{~s}} \mathrm{a}+\frac{1}{\mathrm{~s}(\mathrm{~s}+1)} \mathrm{b} \Rightarrow \mathrm{y}(\mathrm{t})=2\left[\mathrm{t}+\mathrm{e}^{-\mathrm{t}}-1\right]+2\left[\frac{\mathrm{t}^{2}}{2}-\mathrm{e}^{-\mathrm{t}}-\mathrm{t}+1\right]$
$+a+b\left[1-e^{-t}\right]$, but $y(2)=4$ and $y^{\prime}(2)=4$, therefore $a=b=0$. Hence $y(t)=t^{2}$.

Answer of question 3

$\mathrm{L}\{\mathrm{t} \sin 2 \mathrm{tcosh} 3 \mathrm{t}\}=\mathrm{L}\left\{\operatorname{tsin} 2 \mathrm{t}\left(\mathrm{e}^{3 \mathrm{t}}+\mathrm{e}^{-3 \mathrm{t}}\right) / 2\right\}=\frac{2(\mathrm{~s}-3)}{\left[(\mathrm{s}-3)^{2}+4\right]^{2}}+\frac{2(\mathrm{~s}+3)}{\left[(\mathrm{s}+3)^{2}+4\right]^{2}}$
Since $g(t)=\left\{\begin{array}{cc}6 t & 0<t \leq 2 \\ 3 t^{2} & 2<t \leq 3 \\ 27 & t>3\end{array}\right\}=6 t[u(t)-u(t-2)]+3 t^{2}[u(t-2)-u(t-3)]+27 u(t-3)$, therefore
$\mathrm{g}(\mathrm{t})=6 \mathrm{tu}(\mathrm{t})-6(\mathrm{t}-2+2) \mathrm{u}(\mathrm{t}-2)+3(\mathrm{t}-2+2)^{2} \mathrm{u}(\mathrm{t}-2)-3(\mathrm{t}-3+3)^{2} \mathrm{u}(\mathrm{t}-3)+27 \mathrm{u}(\mathrm{t}-3)=$ $6 t \mathrm{u}(\mathrm{t})+6(\mathrm{t}-2) \mathrm{u}(\mathrm{t}-2)+3(\mathrm{t}-2)^{2} \mathrm{u}(\mathrm{t}-2)-3(\mathrm{t}-3)^{2} \mathrm{u}(\mathrm{t}-3)-18(\mathrm{t}-3) \mathrm{u}(\mathrm{t}-3)$, thus
$G(s)=6 / s+\left(6 / s^{2}\right) e^{-2 s}+\left(6 / s^{3}\right) e^{-2 s}+\left(6 / s^{3}\right) e^{-3 s}-\left(18 / s^{2}\right) e^{-3 s}$
$\mathrm{L}\left\{\frac{\cos 2 \mathrm{t}-\cos 3 \mathrm{t}}{\mathrm{t}}\right\}=\int_{\mathrm{s}}^{\infty}\left(\frac{\mathrm{s}}{\mathrm{s}^{2}+4}-\frac{\mathrm{s}}{\mathrm{s}^{2}+9}\right) \mathrm{ds}=\frac{1}{2} \ln \left[\frac{\mathrm{~s}^{2}+9}{\mathrm{~s}^{2}+4}\right]$

Answer of question 4

a) Since $\frac{s+2-2}{(s+2)^{2}+5}=\frac{s+2}{(s+2)^{2}+5}-\frac{2}{(s+2)^{2}+5}$, therefore

$$
\mathrm{f}(\mathrm{t})=\mathrm{e}^{-2 \mathrm{t}}\left(\cos \sqrt{5} \mathrm{t}-\frac{2}{\sqrt{5}} \sin \sqrt{5} \mathrm{t}\right)+\mathrm{e}^{-3(t-2)} \mathrm{U}(\mathrm{t}-2)+\frac{1}{2!} \mathrm{t}^{2} \mathrm{e}^{-9 \mathrm{t}}
$$

Answer of question 5

$\mathrm{P}(\mathrm{B} \geq 1)=\mathrm{P}(\mathrm{B}=1)+\mathrm{P}(\mathrm{B}=2)=2 \mathrm{P}(\mathrm{GB})+2 \mathrm{P}(\mathrm{RB})+\mathrm{P}(\mathrm{BB})=7 / 15+1 / 15=8 / 15$
Let r.v. X is the red cards, then $P(X=0)=P(G G)+P(B B)+2 P(B G)=2 / 9$,
$\mathrm{P}(\mathrm{X}=1)=2 \mathrm{P}(\mathrm{RG})+2 \mathrm{P}(\mathrm{RB})=5 / 9, \quad \mathrm{P}(\mathrm{X}=2)=\mathrm{P}(\mathrm{RR})=2 / 9, \mathrm{E}(\mathrm{X})=1, \operatorname{Var}(\mathrm{X})=4 / 9$, mode $=\{1\}, \mathrm{V}(3 \mathrm{X}-1)=9 \mathrm{~V}(\mathrm{X})=4$ and C.d.F. is expressed as

X	0	1	2
$\mathrm{~F}(\mathrm{X})$	$2 / 9$	$7 / 9$	1

Answer of question 6

$P(X>x)=1-P(X<x)=1-\int_{0}^{x} \frac{1}{40} e^{-x / 40} d x=e^{-x / 40}$. To get the median a such that $P(X<a)=0.5$, therefore $\int_{0}^{\mathrm{a}} \frac{1}{40} \mathrm{e}^{-\mathrm{x} / 40} \mathrm{dx}=0.5$, thus $1-\mathrm{e}^{-\mathrm{a} / 40}=0.5 \Rightarrow \mathrm{a}=-40 \ln (0.5)=27.726$, and
m.g.f. $=\int_{0}^{\infty} \mathrm{e}^{\mathrm{tx}}\left(\frac{1}{40} \mathrm{e}^{-\mathrm{x} / 40}\right) \mathrm{dx}=\int_{0}^{\infty} \frac{1}{40} \mathrm{e}^{\frac{(1-40 \mathrm{t}) \mathrm{x}}{40}} \mathrm{dx}=\frac{1}{1-40 \mathrm{t}}=\phi(\mathrm{t})$, therefore $\mu_{1}{ }^{\prime}=\phi^{\prime}(0)=$
$\left.\frac{40}{(1-40 \mathrm{t})^{2}}\right|_{\mathrm{t}=0}=40=\mathrm{E}(\mathrm{X})$ and $\mu_{2}{ }^{\prime}=\phi^{\prime \prime}(0)=\left.\frac{3200}{(1-40 \mathrm{t})^{3}}\right|_{\mathrm{t}=0}=3200=\mathrm{E}\left(\mathrm{X}^{2}\right)$, hence $\operatorname{var}(\mathrm{X})=$ $\mathrm{E}\left(\mathrm{X}^{2}\right)-[\mathrm{E}(\mathrm{X})]^{2}=3200-1600=1600$, so standard deviation $=40$

Answer of question 7

$\mathrm{P}=0.6, \mathrm{n}=3, \mathrm{P}(\mathrm{X} \leq 2)=\sum_{\mathrm{x}=0}^{2}{ }^{3} \mathrm{c}_{\mathrm{x}}(0.6)^{\mathrm{x}}(0.4)^{3-\mathrm{x}}=1-\mathrm{P}(\mathrm{X}=3)=1-{ }^{3} \mathrm{c}_{3}(0.6)^{3}(0.4)^{0}=0.784$

Answer of question 8

A- $\mathrm{P}\{$ at least ten/ At least one die comes up six $\}=5 / 11$, since the event ' At least one die comes up six' can be expressed by: $\{(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),(1,6),(2,6),(3,6)$, (4,6), $(5,6)\}$
B- $\mathrm{P}\{$ at least ten/ The same number appears on both dice $\}=2 / 6$, since the event 'The same number appears on both dice' can be expressed by: $\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}$

