| Benha University
 Faculty of Engineering- Shoubra
 $($ Civil $)$ Engineering Department | No. of questions: | Final term exam Date: 1-6-2015
 Mathematics \& Statistics Code: EMP 151
 Duration: 3 hours |
| :---: | :---: | :---: | :---: |
| Answer all the following questions | Total Mark: 70 marks | |
| Question 1 | [20 Marks] | |

a) Test the series
i) $\sum_{n=1}^{\infty} \frac{(\ln \mathrm{n})^{3}}{\mathrm{n}}$
ii) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+3 n+10}$
iii) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n}{5^{n}}$
b) Find interval of convergence for the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2 n-1}}{(2 n-1)!}$
c) Expand $f(x, y)=e^{x}$ cosy in powers of x and y up to third degree approximation
d) If $W(x, y)=\ln \left(x^{2} y\right)$, prove that $x^{2} w_{x x}+2 x y w_{x y}+y^{2} w_{y y}+3=0$
e) Use Lagrange Multiplier to find the extrema of the function:

$$
f(x, y)=2 x^{2}+x y-y^{2}+y \quad \text { subject to } 2 x+3 y=1
$$

Question 2

[20 Marks]

Solve the following differential equations:

i) $(2 y-x) y^{`}+2 y=x+1$
ii) $x^{2} y^{2} y^{\prime}+x y^{3}=1$
iii) $\mathrm{x}^{\prime} y^{`}+\mathrm{y}(1-\mathrm{x} y \sin \mathrm{x})=0$
iv) $y^{\prime \prime}-y^{\prime \prime}-6 y^{`}=x^{2}+1$
v) $y^{\prime}-4 y^{`}+4 y=x^{2} e^{2 x} \sin (2 x)$

Question 3

I) If $\mathbf{f}(\mathbf{x})=\mathbf{a} \mathbf{x}+\mathbf{b} \mathbf{x}^{3}$ is a discrete probability distribution, $0<x \leq 3$, given $\mathrm{E}(3 \mathrm{X}-1)=6.5$, find Law of distribution, $V(3 X-7)$, mode and median.
II) A pair of fair dice is thrown. If two numbers are different, find the probability that:
a) The sum is 6
b) an ace appears
c) the sum is 4 or less
d) the sum is even

Question 4

[15 Marks]
I) Consider the function $f(x)=c\left(2 x-x^{2}\right) \quad 0<x<3 / 2$. Could f be a probability density function? If so determine c, mode and median
II) Six different colored dice are rolled, the random variable is the numbers of dice that show a " 4 ", find the probability that at least 3 dice show a " 4 ." Find expected value and standard deviation.

Board of Examiners: Dr. Ibrahim Sakr \& Dr. eng. Khaled el Naggar

Answer of Question 3

I) Since $f(x)=a x+b x^{3}$ is a discrete probability distribution, therefore $6 a+36 b=1$. But $\mathrm{E}(3 \mathrm{X}-1)=6.5$, thus $\mathrm{E}(\mathrm{X})=2.5$ and hence $14 \mathrm{a}+98 \mathrm{~b}=2.5$. By solving the 2 equations, we get $a=0.1$ and $b=0.011$, therefore the law of distribution is

x	1	2	3
$f(x)$	0.111	0.288	0.597

$\mathrm{E}\left(\mathrm{x}^{2}\right)=6.636$, hence $\operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{x}^{2}\right)-[\mathrm{E}(\mathrm{x})]^{2}=0.386 \Rightarrow \mathrm{~V}(3 \mathrm{X}-7)=3.474$ cumulative density function is

x	1	2	3
$f(x)$	0.111	0.499	1

Median $=\{2\}, \quad$ Mode $=\{3\}$
II) $\mathrm{A}=\{$ two numbers are different $\}$ and $\mathrm{B}=\{$ Sum is 6$\}, \mathrm{P}(\mathrm{B} / \mathrm{A})=4 / 30=2 / 15$,
$\mathrm{C}=\{$ an ace appear $\}, \mathrm{P}(\mathrm{C} / \mathrm{A})=10 / 30=1 / 3$,
$\mathrm{D}=\{$ the sum is 4 or less $\}, \mathrm{P}(\mathrm{D} / \mathrm{A})=4 / 30=2 / 15$,
$E=\{$ the sum is even $\}=12 / 30=6 / 15$.

Answer of Question 4

I) If $2 x-x^{2}>0$, then $x \in[0,2]$ and hence $f=c\left(2 x-x^{2}\right)$ is a probability density function, where $\int_{0}^{3 / 2} c\left(2 x-x^{2}\right) d x=1 \Rightarrow c\left(x^{2}-\frac{x^{3}}{3}\right)_{x=0}^{3 / 2}=1 \Rightarrow c=8 / 9$ and mode $=\{1\}$

Since cumulative density function is expressed by $F(x)=\int_{0}^{x} \frac{8}{9}\left(2 x-x^{2}\right) d x=\frac{8}{9}\left(x^{2}-\frac{x^{3}}{3}\right)$, thus $\int_{0}^{x} \frac{8}{9}\left(2 x-x^{2}\right) d x=\frac{8}{9}\left(x^{2}-\frac{x^{3}}{3}\right)=0.5$, from which x is the median
II) Since $n=6$ and $p=1 / 6$, thus $q=5 / 6$, hence $p(x \geq 3)=\sum_{x=3}^{6}{ }^{6} c_{x}\left(\frac{1}{6}\right)^{x}\left(\frac{5}{6}\right)^{6-x}, E(X)=n p=1$ and $\operatorname{Var}(\mathrm{X})=\mathrm{npq}=5 / 6 \Rightarrow \sigma_{\mathrm{x}}=\sqrt{5 / 6}$.

