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Question 1 [50]

a) Evaluate the following integrals -5t

0
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b) Solve the following differential equations using Laplace Transform:
i) 3 y` + 4y = e2t,   y(0) = 1/3,           ii) y``+ y = 2t , y(0) = 3 , y`(0) = 1
c) Solve the D.E. y``- xy`+ y=0 using series solution about x = x0
d) Find inverse Laplace for the following functions:

F(s) =
-2 s

2
e

(s 1) 4



 
+ 3
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(s +3)
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25
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s
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e) Find Laplace transform for the following function:

f(t) =
2u -3ut

u 0

e et du
u


 +  [ -e5t +2+ 3t2] U(t-3)

Question 2 [50]
a) Suppose the probability that a college freshman will graduate is 0.6. Three sisters (triplets)
enter college at the same time. What is the probability that at most 2 sisters will graduate?

b) In a factory we have four machines producing 1000, 1200, 1800, 2000 items per day with
defects 1%, 5%, 5%, 1% respectively, find :

i) The probability of selecting a defective item.
ii) The probability that this defective item is produced by third machine.

c) Let the r.v. X be the distance in feet between bad records on a used computer tape.
Suppose that a reasonable probability model for X is given by the p.d.f.

f(x) = -x/401 e , 0 x <
40

  , find  P(X > x) and then the median, also find m.g.f. and then

deduce mean, standard deviation.
d) A random variable X has the following distribution

X -2 -1 0 1 2 3
P(x) 0.1 k 0.2 2k 0.3 3k

Find    P ( X < 2 ) , P ( -2 < X < 2 ),  C.d.f. , the mean of X and the variance.

e) Find the moment generating functions of the exponential distribution. Find the expected
value, variance using M.G.F. and the first three moments about zero and about mean.
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Model answer

Answer of question 1

a)

-5t
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
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  b- By taking Laplace for Both equations , therefore

i) 3[ sY(s) – y(0)] + 4 Y(s) = 1/(s-2), therefore Y(s) = 1
(3s 4)(s 2) 
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c) Let n
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Put n = s+2 for 1st term, n = s for the 2nd term, n = s+1 for 3rd term and n = s for 4th term, we

get:
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By comparing of coefficients, we get:

2a2 - x0 a1 + a0 = 0 , from which   a2 = 1 00x  a  - a
2 and  by comparing coefficients of

0
s(x -x ) , s = 1, 2, 3, ….,we  get

s0 s+1
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The solution will be in the form
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y(x) = a (x -x )


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2 0(x - x ) 2 - 0x
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Answer of question 2

a) P = 0.6, n = 3, P(X2) =
2 3 x 3-x

x
x=0

c (0.6) (0.4) =1– P(X=3) =   1- 3 3 0
3c (0.6) (0.4) = 0.784

b) Let the defective event is F and the probability of machines A,B,C,D are 1/6, 1/5, 3/10,
1/3 respectively, also P(F/A) = 0.01, P(F/B) = 0.05, P(F/C) = 0.05, P(F/D) = 0.01.
Therefore
i- P(F) = P(F/A)P(A) + P(F/B)P(B) + P(F/C)P(C) + P(F/D)P(D) = 0.01(1/6) + 0.05(1/5) +
0.05(3/10) + 0.01(1/3) = 0.03

ii- P(C/F) = P(F/ C)P(C)
P(F)

= 0.05(3/10)
0.03

= 0.5

c) P(X > x) = 1 – P(X<x) = 1-
x

0

-x/401 e dx
40 = -x/40e .To get the median a such that P(X< a) =

0.5, therefore
a

0

-x/401 e dx 0.5
40

 , thus  1- -a/40e 0.5  a = -40 ln(0.5) = 27.726, and

m.g.f. =
0 0

-(1-40t)x
tx -x/40 401 1 1e ( e )dx e dx t)
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  , therefore 1  = 0) =



2
t = 0

40
(1 40t)

= 40 = E(X) and 2  = 0) = 3
t = 0

3200
(1 40t)

= 3200 = E(X2), hence var(X) =

E(X2) – [E(X)]2 = 3200 – 1600 = 1600, so standard deviation = 40

d) Since
3

i
i=-2

P(x ) 1 , therefore 0.1 + k + 0.2 + 2k + 0.3 + 3k = 1, thus k = 1/15

P ( X < 2 ) = P(x = -2) + P(x = -1) + P(x=0) + P(x=1) = 0.3 + 3k = 0.5

P ( -2 < X < 2 ) = P(x = -1) + P(x=0) + P(x=1) = 3k + 0.2 = 0.4

cumulative distribution of X

X -2 -1 0 1 2 3
F(x) 0.1 1/6 11/30 0.5 0.8 1

E(X) = -2(0.1) -1(1/15) + 0(0.2) + 1(2/15) + 2(0.3) + 3(1/5) = 16/15, E(X2) = 4(0.1) +1(1/15)

+ 0(0.2) + 1(2/15) + 4(0.3) + 9(1/5) = 2.4, thus Var(X) = E(X2) – [E(X)]2 = 2.4 – (16/15) 2

= 1.2622.

e) E(etx) =
0 0

-( t)xtx - xe ( e ) dx = e dx =
t

 
  

 

E(X) = 2
d ( )
dt t t) 

 
, at t =0 E(X) = 1/λ

E(X2) =
2

2 3
d ( )
dt t t) 

 
, at t =0 E(X2) = 2/  , Var(X) = 1/ 

Moments about zero:  = 1,  = E(X) 1/  , 
2E(X ) 2/   

Moments about zero: 1, 0, var(X)        = 1/ 


