Benha University Faculty of Engineering- Shoubra Industrial Engineering Program Final Examination

- Answer all the following questions
- Illustrate your answers with sketches when necessary.
- The Exam. Consists of one Page

Question 1

Solve the following differential equations

a) (x+2y) dx - (2x-y+1) dy = 0b) $y'' + y = \tan(x)$ c) $(2y+x^2+1)\frac{dy}{dx} - 9x^2 + 2xy = 0$ d) $y'' + 5y' + 4y = e^{5x} \cos 2x$ e) $xy'' + y = -x^3$

Question 2

Solve using Picard's method up to 2nd approximation the following differential equation: $y'' = x^3 (y' + y)$, y(0) = 1, $y'(0) = \frac{1}{2}$, then find y(0.2) using Euler method, h = 0.1.

Question 3

a) Find inverse Laplace for the function $F(s) = \frac{s e^{-2s}}{s^2 + 6s + 20} + \frac{1}{(3s+4)^3}$

b) Find Laplace transform for the function $f(t) = tsin2tcosh3t + e^{-3t} \int_{u=0}^{t} e^{-2u} sin u du$

Dr. Eng. Khaled El Naggar

Subject: Mathematics 4 Code: EMP 202 Date: 28/5/2016 **Duration :** 3 hours

- No. of Questions: 2
- Total Mark: 40 Marks

[20 Marks]

[10 Marks]

[10 Marks]

Model answer

1-a) Put x = X-2/5, y = Y+1/5, hence (X+2Y) dX + (2X-Y) dY = 0 Then, put Y = v X, thus dY = v dX + X dv Therefore (X+2vX) dX - (2X-vX) (v dX + X dv) = 0 Hence (X + v²X) dX - (2X-vX) X dv = 0 $\Rightarrow \frac{dx}{x} + \frac{v-2}{v^2+1} dv = 0$

$$\Rightarrow \ln X + \frac{1}{2}\ln(v^{2} + 1) - 2\tan^{-1}v \Rightarrow \ln(x + \frac{2}{5}) + \frac{1}{2}\ln(\frac{y - 1/5}{x + 2/5})^{2} + 1) - 2\tan^{-1}(\frac{y - 1/5}{x + 2/5})$$

1-b) The characteristic equation is $m^2 + 1 = 0 \Rightarrow m = \pm i =$, thus $y_c = (c_1 \cos x + c_2 \sin x)$, and $y_1(x) = \cos x$, $y_2(x) = \sin x$, therefore $W(y_1, y_2) = y'_2 y_1 - y_2 y'_1 = 1$, $g(x) = \tan x$

$$\int \frac{y_2 g(x)}{W(y_1, y_2)} dx = \int \frac{\sin x \tan x}{1} dx = \int \frac{\sin^2 x}{\cos x} dx = \int \frac{1 - \cos^2 x}{\cos x} dx = \ln(\sec x + \tan x) - \sin x$$

$$\int \frac{y_1 g(x)}{W(y_1, y_2)} dx = \int \frac{\cos(\tan x)}{1} dx = \int \sin x dx = -\cos x$$

But
$$Y_p(x) = -y_1 \int \frac{y_2 g(x)}{W(y_1, y_2)} dx + y_2 \int \frac{y_1 g(x)}{W(y_1, y_2)} dx$$
, thus $Y = Y_c + Y_p$

1-c) $(-9x^2 + 2xy)dx + (2y + x^2 + 1)dy = 0 \Rightarrow M_y = N_x$, therefore the D.E. is exact.

Let
$$f(x,y) = c \Rightarrow f_x dx + f_y dy = 0 \Rightarrow f_x = -9x^2 + 2xy \Rightarrow f(x,y) = -3x^3 + x^2y + \phi(y) \Rightarrow$$

 $f_y = x^2 + \phi'(y) = 2y + x^2 + 1 \Rightarrow \phi'(y) = 2y + 1 \Rightarrow \phi(y) = y^2 + y + c$

1-d) The characteristic equation is $r^2 + 5r + 4 = 0$, therefore r=-4, -1, thus $y_c = (c_1 e^{-4x} + c_2 e^{-x})$

$$Y_{P} = \frac{1}{D^{2} + 5D + 4} e^{5x} \cos 2x = e^{5x} \frac{1}{(D+5)^{2} + 5(D+5) + 4} \cos 2x = e^{5x} \frac{1}{D^{2} + 15D + 54} \cos 2x$$

$$= e^{5x} \frac{1}{15D+50} \cos 2x = e^{5x} \frac{(15D-50)}{225D^2+2500} \cos 2x = e^{5x} \frac{(-30\sin 2x - 50\cos 2x)}{225(-4)+2500}$$

Answer of Q2

Put y'= z, hence y''= z' = $x^3 (z + y) = f(x, y, z)$, such that $x_{0=} 0, y_0 = 1, y'(0) = z_0 = \frac{1}{2}$.

According to the following two formulas, we can get the first two approximations

$$y_{n+1} = y_0 + \int_{x_0}^x z_n \, dx$$
, $z_{n+1} = z_0 + \int_{x_0}^x f(x, y_n, z_n) \, dx = \int_{x_0}^x x^3 (y_n + z_n) \, dx$

Put n=0 to obtain y_1 , z_1 such that $y_1 = y_0 + \int_{x_0}^{x} z_0 dx = 1 + \int_{0}^{x} \frac{dx}{2} = 1 + \frac{x}{2}$ and

$$z_1 = z_0 + \int_{x_0}^x f(x, y_0, z_0) \, dx = \frac{1}{2} + \int_{x_0}^x x^3 \, (y_0 + z_0) \, dx = \frac{1}{2} + \int_0^x x^3 \, (1 + \frac{1}{2}) \, dx = \frac{1}{2} + \frac{3x^4}{8}$$

Put n=1 to obtain y₂, such that $y_2 = y_0 + \int_{x_0}^{x} z_1 dx = 1 + \int_{0}^{x} (\frac{3x^4}{8} + \frac{1}{2}) dx = 1 + \frac{x}{2} + \frac{3x^5}{40}$ By using Euler method, states:

$$y_{n+1} = y_n + h z_n$$
, $h = 0.1$ and $z_{n+1} = z_n + 0.1 x_n^3 (y_n + z_n)$
 $y_1 = y_0 + h z_0 = 1 + 0.1(1/2) = 1.05$ and $z_1 = z_0 + 0.1 x_0^3 (y_0 + z_0) = \frac{1}{2}$
 $y_2 = y_1 + h z_1 = 1.05 + 0.1(1/2) = 1.1 = y(0.2)$

Answer of Q3

a)
$$F(s) = \frac{s e^{-2s}}{s^2 + 6s + 20} + \frac{1}{(3s+4)^3} = \frac{(s+3-3) e^{-2s}}{(s+3)^2 + 11} + \frac{1}{27(s+4/3)^3}$$
, therefore
 $f(t) = e^{-3(t-2)} [\cos \sqrt{11}(t-2) - \frac{3}{\sqrt{11}} \sin \sqrt{11}(t-2)] U(t-2) + \frac{1}{54} e^{-(4/3)t} t^2$
b) $L\{ tsin2tcosh3t\} = L\{ tsin2t(e^{3t} + e^{-3t})/2\} = \frac{2(s-3)}{[(s-3)^2 + 4]^2} + \frac{2(s+3)}{[(s+3)^2 + 4]^2}$

L{
$$e^{-3t} \int_{u=0}^{t} e^{-2u} \sin u \, du$$
} = $\frac{1}{[(s+5)^2+1][s+3]}$

•

INTENDED LEARNING OUTCOMES OF COURSE (ILOs)

a. Knowledge and Understanding: a.1) Recognize concepts and theories of mathematics.	(A.1)
a.2) Recognize methodologies of solving engineering problems.	(A.5)
b. Intellectual Skills	
b.1) Select appropriate mathematical methods for analyzing problems.	(B.1)
b.2) Solve engineering problems, often on the basis of limited and possibly (B.7)	contradicting information
c. Professional and Practical Skillsc.1) Apply knowledge, skills of mathematics essential in commercial and	industrial environment. (C.15)
d. General and Transferable Skillsd.1) Collaborate effectively within multidisciplinary team.	(D.1)

d.2) Lead and motivate individuals.

(D.5)

Questions	Total marks	Achieved ILOS
Q1	20	a1,a2, b1
Q2	20	a1,b1,b2