Benha University
Faculty of Engineering- Shoubra Industrial Engineering Program Final Examination

- Answer all the following questions
- Illustrate your answers with sketches when necessary.
- The Exam. Consists of one Page

Question 1

[20 Marks]

Solve the following differential equations

a) $(x+2 y) d x-(2 x-y+1) d y=0$
b) $y^{\prime `}+y=\tan (x)$
c) $\left(2 y+x^{2}+1\right) \frac{d y}{d x}-9 x^{2}+2 x y=0$
d) $y^{\prime \prime}+5 y^{\prime}+4 y=e^{5 x} \cos 2 x$
e) $x y^{`}+y=-x^{3}$

Question 2

Solve using Picard's method up to $2^{\text {nd }}$ approximation the following differential equation: $y^{\prime \prime}=x^{3}\left(y^{\prime}+y\right), y(0)=1, y^{\prime}(0)=1 / 2$, then find $y(0.2)$ using Euler method, $h=0.1$.

Question 3

[10 Marks]
a) Find inverse Laplace for the function $F(s)=\frac{s e^{-2 s}}{s^{2}+6 s+20}+\frac{1}{(3 s+4)^{3}}$
b) Find Laplace transform for the function $f(t)=t \sin 2 t \cosh 3 t+e^{-3 t} \int_{u=0}^{t} e^{-2 u} \sin u d u$

1-a) Put $\mathrm{x}=\mathrm{X}-2 / 5, \mathrm{y}=\mathrm{Y}+1 / 5$, hence $(\mathrm{X}+2 \mathrm{Y}) \mathrm{dX}+(2 \mathrm{X}-\mathrm{Y}) \mathrm{dY}=0$
Then, put $\mathrm{Y}=\mathrm{vX}$, thus $\mathrm{d} Y=v d X+X d v$
Therefore $(\mathrm{X}+2 \mathrm{vX}) \mathrm{dX}-(2 \mathrm{X}-\mathrm{vX})(\mathrm{vdX}+\mathrm{Xdv})=0$
Hence $\left(X+v^{2} X\right) d X-(2 X-v X) X d v=0 \Rightarrow \frac{d x}{x}+\frac{v-2}{v^{2}+1} d v=0$
$\left.\Rightarrow \ln \mathrm{X}+\frac{1}{2} \ln \left(\mathrm{v}^{2}+1\right)-2 \tan ^{-1} \mathrm{v} \Rightarrow \ln \left(\mathrm{x}+\frac{2}{5}\right)+\frac{1}{2} \ln \left(\frac{\mathrm{y}-1 / 5}{\mathrm{x}+2 / 5}\right)^{2}+1\right)-2 \tan ^{-1}\left(\frac{\mathrm{y}-1 / 5}{\mathrm{x}+2 / 5}\right)$
1-b) The characteristic equation is $\mathrm{m}^{2}+1=0 \Rightarrow m= \pm i=$, thus $y_{c}=\left(c_{1} \cos x+c_{2} \sin x\right)$, and $\quad \mathrm{y}_{1}(\mathrm{x})=\cos \mathrm{x}, \mathrm{y}_{2}(\mathrm{x})=\sin \mathrm{x}$, therefore $\mathrm{W}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)=\mathrm{y}_{2}^{\prime} \mathrm{y}_{1}-\mathrm{y}_{2} \mathrm{y}_{1}^{\prime}=1, \mathrm{~g}(\mathrm{x})=\tan \mathrm{x}$

$$
\begin{aligned}
& \int \frac{y_{2} g(x)}{W\left(y_{1}, y_{2}\right)} d x=\int \frac{\sin x \tan x}{1} d x=\int \frac{\sin ^{2} x}{\cos x} d x=\int \frac{1-\cos ^{2} x}{\cos x} d x=\ln (\sec x+\tan x)-\sin x \\
& \int \frac{y_{1} g(x)}{W\left(y_{1}, y_{2}\right)} d x=\int \frac{\cos x(\tan x)}{1} d x=\int \sin x d x=-\cos x
\end{aligned}
$$

But $Y_{p}(x)=-y_{1} \int \frac{y_{2} g(x)}{W\left(y_{1}, y_{2}\right)} d x+y_{2} \int \frac{y_{1} g(x)}{W\left(y_{1}, y_{2}\right)} d x$, thus $Y=Y_{c}+Y_{p}$
1-c) $\left(-9 x^{2}+2 x y\right) d x+\left(2 y+x^{2}+1\right) d y=0 \Rightarrow \mathbf{M}_{y}=\mathbf{N}_{\mathbf{x}}$, therefore the D.E. is exact.
Let $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{c} \Rightarrow \mathrm{f}_{\mathrm{x}} \mathrm{dx}+\mathrm{f}_{\mathrm{y}} \mathrm{dy}=0 \Rightarrow \mathrm{f}_{\mathrm{x}}=-9 \mathrm{x}^{2}+2 \mathrm{xy} \Rightarrow \mathrm{f}(\mathrm{x}, \mathrm{y})=-3 \mathrm{x}^{3}+\mathrm{x}^{2} \mathrm{y}+\phi(\mathrm{y}) \Rightarrow$ $f_{y}=x^{2}+\phi^{\prime}(y)=2 y+x^{2}+1 \Rightarrow \phi^{\prime}(y)=2 y+1 \Rightarrow \phi(y)=y^{2}+y+c$

1-d) The characteristic equation is $r^{2}+5 r+4=0$, therefore $r=-4,-1$, thus $y_{c}=\left(c_{1} e^{-4 x}+c_{2}\right.$ $\mathrm{e}^{-\mathrm{x}}$)
$Y_{P}=\frac{1}{D^{2}+5 D+4} e^{5 x} \cos 2 x=e^{5 x} \frac{1}{(D+5)^{2}+5(D+5)+4} \cos 2 x=e^{5 x} \frac{1}{D^{2}+15 D+54} \cos 2 x$
$=e^{5 x} \frac{1}{15 D+50} \cos 2 x=e^{5 x} \frac{(15 D-50)}{225 D^{2}+2500} \cos 2 x=e^{5 x} \frac{(-30 \sin 2 x-50 \cos 2 x)}{225(-4)+2500}$

Answer of Q2

Put $y^{`}=z$, hence $y^{`}=z^{`}=x^{3}(z+y)=f(x, y, z)$, such that $x_{0}=0, y_{0}=1, y^{`}(0)=$ $Z_{0}=1 / 2$.

According to the following two formulas, we can get the first two approximations
$y_{n+1}=y_{0}+\int_{x_{0}}^{x} z_{n} d x, \quad z_{n+1}=z_{0}+\int_{x_{0}}^{x} f\left(x, y_{n}, z_{n}\right) d x=\int_{x_{0}}^{x} x^{3}\left(y_{n}+z_{n}\right) d x$
Put $\mathrm{n}=0$ to obtain $\mathrm{y}_{1}, \mathrm{z}_{1}$ such that $\mathrm{y}_{1}=\mathrm{y}_{0}+\int_{\mathrm{x}_{0}}^{\mathrm{x}} \mathrm{z}_{0} \mathrm{dx}=1+\int_{0}^{\mathrm{x}} \frac{\mathrm{dx}}{2}=1+\frac{\mathrm{x}}{2}$ and
$Z_{1}=z_{0}+\int_{x_{0}}^{x} f\left(x, y_{0}, z_{0}\right) d x=\frac{1}{2}+\int_{x_{0}}^{x} x^{3}\left(y_{0}+z_{0}\right) d x=\frac{1}{2}+\int_{0}^{x} x^{3}\left(1+\frac{1}{2}\right) d x=\frac{1}{2}+\frac{3 x^{4}}{8}$
Put $\mathrm{n}=1$ to obtain y_{2}, such that $\mathrm{y}_{2}=\mathrm{y}_{0}+\int_{\mathrm{x}_{0}}^{\mathrm{x}} \mathrm{z}_{1} \mathrm{dx}=1+\int_{0}^{\mathrm{x}}\left(\frac{3 \mathrm{x}^{4}}{8}+\frac{1}{2}\right) \mathrm{dx}=1+\frac{\mathrm{x}}{2}+\frac{3 \mathrm{x}^{5}}{40}$ By using Euler method, states:

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{n}+1}=\mathrm{y}_{\mathrm{n}}+\mathrm{h} \mathrm{z}_{\mathrm{n}}, \mathrm{~h}=0.1 \text { and } \mathrm{z}_{\mathrm{n}+1}=\mathrm{z}_{\mathrm{n}}+0.1 \mathrm{x}_{\mathrm{n}}^{3}\left(\mathrm{y}_{\mathrm{n}}+\mathrm{z}_{\mathrm{n}}\right) \\
& \mathrm{y}_{1}=\mathrm{y}_{0}+\mathrm{h} \mathrm{z}_{0}=1+0.1(1 / 2)=1.05 \text { and } \mathrm{z}_{1}=\mathrm{z}_{0}+0.1 \mathrm{x}_{0}^{3}\left(\mathrm{y}_{0}+\mathrm{z}_{0}\right)=1 / 2 \\
& \mathrm{y}_{2}=\mathrm{y}_{1}+\mathrm{h} \mathrm{z}_{1}=1.05+0.1(1 / 2)=1.1=\mathrm{y}(0.2)
\end{aligned}
$$

Answer of Q3

a) $F(s)=\frac{s e^{-2 s}}{s^{2}+6 s+20}+\frac{1}{(3 s+4)^{3}}=\frac{(s+3-3) e^{-2 s}}{(s+3)^{2}+11}+\frac{1}{27(s+4 / 3)^{3}}$, therefore
$\mathrm{f}(\mathrm{t})=\mathrm{e}^{-3(\mathrm{t}-2)}\left[\cos \sqrt{11}(\mathrm{t}-2)-\frac{3}{\sqrt{11}} \sin \sqrt{11}(\mathrm{t}-2)\right] \mathrm{U}(\mathrm{t}-2)+\frac{1}{54} \mathrm{e}^{-(4 / 3) \mathrm{t}} \mathrm{t}^{2}$
b) $\mathrm{L}\{\mathrm{t} \sin 2 \mathrm{t} \cosh 3 \mathrm{t}\}=\mathrm{L}\left\{\mathrm{t} \sin 2 \mathrm{t}\left(\mathrm{e}^{3 \mathrm{t}}+\mathrm{e}^{-3 \mathrm{t}}\right) / 2\right\}=\frac{2(\mathrm{~s}-3)}{\left[(\mathrm{s}-3)^{2}+4\right]^{2}}+\frac{2(\mathrm{~s}+3)}{\left[(\mathrm{s}+3)^{2}+4\right]^{2}}$

$$
\mathrm{L}\left\{\mathrm{e}^{-3 \mathrm{t}} \int_{\mathrm{u}=0}^{\mathrm{t}} \mathrm{e}^{-2 \mathrm{u}} \sin \mathrm{udu}\right\}=\frac{1}{\left[(\mathrm{~s}+5)^{2}+1\right][\mathrm{s}+3]}
$$

a. Knowledge and Understanding:

a.1) Recognize concepts and theories of mathematics.
a.2) Recognize methodologies of solving engineering problems.
b. Intellectual Skills
b.1) Select appropriate mathematical methods for analyzing problems.
b.2) Solve engineering problems, often on the basis of limited and possibly contradicting information (B.7)
c. Professional and Practical Skills
c.1) Apply knowledge, skills of mathematics essential in commercial and industrial environment. (C.15)
d. General and Transferable Skills
d.1) Collaborate effectively within multidisciplinary team. (D.1)
d.2) Lead and motivate individuals.

Questions	Total marks	Achieved ILOS
Q1	$\mathbf{2 0}$	a1,a2, b1
Q2	$\mathbf{2 0}$	$\mathbf{a 1 , b 1 , b 2}$

