Benha University Faculty of Engineering at Shoubra Electrical Engineering Department Third Year (Computer)

Make Up Exam (Spring 2016) Date: (25/5/2016) Subject: Electronic Circuits (1) Duration: 3 hours

Answer all the following questions

• No. of questions : 4

• Total Mark: 80 Marks

Model Answer

Question (1) (10Marks)

Choose the correct answer:

- 1- Which of the h-parameters corresponds to re in a common-base configuration?
 - a. h_{rb} b. h_{fb} c. $\underline{h}_{\underline{i}\underline{b}}$ d. h_{ob}
- 2- For the common emitter amplifier, the output is from

a. base b. emitter <u>c. collector</u>

- 3- The maximum efficiency of class A power amplifier is
 - a. 10% <u>b. 25%</u> c. 45% d. 78%
- 4- Tuned Amplifier is class amplifier.
 - a. A b. B c. C d. AB
- 5- In the h-model, hi represents.....
 - a. <u>Input resistance</u> b. forward transfer current ratio c. output conductance

Question (2) (25 Marks)

- 1- Given IE=2.5mA, h_{fe} =140, h_{oe} =20uS and h_{ob} =0.5 uS, determine and sketch
 - a. the common base r_{e} model
 - b. the common emitter r_e model
 - c. the common base hybrid equivalent circuit
 - d. the common emitter hybrid equivalent circuit

Answer:

Use the following conversion formula

 $re=26mv/I_E=26/2.5=10.4$ ohm

 $\beta = h_{fe} = 140$

 β re=1.456 K ohm

Sketch the model with all parameters are now know

- 2- Given the packaged amplifier in the shown figure :
 - a. Determine the gain Av_L with $R_L = 1.2$ k ohm.
 - b. Determine Avs with $R_L = 1.2$ k ohm.
 - c. Find the current gain Ai with $R_L = 5.6$ k ohm.

Answer:

a. Eq. (5.89):
$$A_{\nu_L} = \frac{\kappa_L}{R_L + R_o} A_{\nu_{NL}}$$

= $\frac{1.2 \text{ k}\Omega}{1.2 \text{ k}\Omega + 2 \text{ k}\Omega} (-480) = (0.375)(-480)$
= -180

which is a dramatic drop from the no-load value.

b.

$$A_{\nu_s} = \frac{R_i}{R_i + R_s} \cdot \frac{R_L}{R_L + R_o} A_{\nu_{\rm NL}}$$

= $\frac{4 \,\mathrm{k}\Omega}{4 \,\mathrm{k}\Omega + 0.2 \,\mathrm{k}\Omega} \cdot \frac{1.2 \,\mathrm{k}\Omega}{1.2 \,\mathrm{k}\Omega + 2 \,\mathrm{k}\Omega} (-480)$
= $(0.952)(0.375)(-480)$
= -171.36

$$A_{i_L} = \frac{I_o}{I_i} = \frac{I_o}{I_s} = -A_{\nu_L} \frac{Z_i}{R_L}$$

= -(-353.76) $\left(\frac{4 \,\mathrm{k}\Omega}{5.6 \,\mathrm{k}\Omega}\right) = -(-353.76)(0.714)$
= 252.6

Question (3) (30 Marks)

- 1- For the shown amplifier, determine
 - a. Z_i
 - b. Z_o
 - c. A_v
 - d. A_i

Answer:

a.
$$Z_i = R_B \| h_{ie} = 330 \text{ k}\Omega \| 1.175 \text{ k}\Omega$$

 $\cong h_{ie} = 1.171 \text{ k}\Omega$
b. $r_o = \frac{1}{h_{oe}} = \frac{1}{20 \,\mu\text{A/V}} = 50 \text{ k}\Omega$
 $Z_o = \frac{1}{h_{oe}} \| R_C = 50 \text{ k}\Omega \| 2.7 \text{ k}\Omega = 2.56 \text{ k}\Omega \cong R_C$
c. $A_v = -\frac{h_{fe}(R_C \| 1/h_{oe})}{h_{ie}} = -\frac{(120)(2.7 \text{ k}\Omega \| 50 \text{ k}\Omega)}{1.171 \text{ k}\Omega} = -262.34$
d. $A_i \cong h_{fe} = 120$

2- For the shown amplifier network, determine

b.
$$V_o$$
 if $V_i=2mV$.

Answer:

DC:
$$I_B = \frac{V_{CC} - V_{BE}}{R_F + \beta R_C}$$

$$= \frac{12 \text{ V} - 0.7 \text{ V}}{(120 \text{ k}\Omega + 68 \text{ k}\Omega) + (140)3 \text{ k}\Omega}$$

$$= \frac{11.3 \text{ V}}{608 \text{ k}\Omega} = 18.6 \,\mu\text{A}$$
 $I_E = (\beta + 1)I_B = (141)(18.6 \,\mu\text{A})$

$$= 2.62 \text{ mA}$$
 $r_e = \frac{26 \text{ mV}}{I_E} = \frac{26 \text{ mV}}{2.62 \text{ mA}} = 9.92 \,\Omega$

$$\begin{aligned} A_{v} &\cong -\frac{R_{F_{2}} \| R_{C}}{r_{e}} = -\frac{68 \text{ k}\Omega \| 3 \text{ k}\Omega}{9.92 \Omega} \\ &\cong -\frac{2.87 \text{ k}\Omega}{9.92 \Omega} \\ &\cong -289.3 \\ |A_{v}| &= 289.3 = \frac{V_{o}}{V_{i}} \\ V_{o} &= 289.3V_{i} = 289.3(2 \text{ mV}) = 0.579 \text{ V} \end{aligned}$$

Question (4) (15 Marks)

1- Compare between the small-signal amplifier and power amplifier.

small-signal amplifier	power amplifier
Use general purpose transistors	Use power transistors
Linearity is important	Efficiency is important
Doesn't need heat sink	Need heat sink
Provide large voltage gain	Provide large output current
Used as first stage in typical amplifier	Used in the output stage
Configurations are	Classes are
C.E, C.B and C.C	Class A, B, AB and C

- 2- For class A power amplifier, given I_{CQ} =30mA and V_{CEQ} =6.2V,Rc= 2K ohm calculate:
 - a. The maximum peak voltage swing $V_{c(max)}$.
 - b. The maximum output power $P_{out(max)}$.
 - c. The power dissipated by the transistor P_{DQ} .

Answer

- a. $V_{c(max)} = I_{CQ} * Rc = 30*2 = 60V$ (very high value)
- b. $P_{out(max)} = 0.5* I_{CQ} * V_{CEQ} = 0.5*30*6.2 = 93 \text{ mW}$
- c. $P_{DQ} = I_{CQ} * V_{CEQ} = 186 \text{ mW}$
 - 3- Explain the tuned operation in class C amplifier.

Answer

The tuned operation happens within the resonant circuit and the action is as follows

(b) C1 discharges to 0 volts.

(d) C1 discharges to 0 volts.

(c) L recharges C1 in opposite direction.

▲ FIGURE 7-25

Resonant circuit action.

Good Luck, Dr. Ahmad El-Banna